期刊文献+

基于应变模态小波变换的框架结构损伤识别研究 被引量:17

Damage identification of frame structure by means of wavelet analysis of strain mode
下载PDF
导出
摘要 采用应变模态的小波变换方法研究了框架结构的损伤识别问题。以有限元分析求解含裂缝平面框架应变模态为基础,利用Guass2小波对框架的应变模态进行小波变换,再用db3小波对应变模态小波变换系数进行去噪处理,最后通过对去噪处理后的小波系数模极大值点来识别框架结构裂缝的位置,建立了基于应变模态小波变换识别平面框架损伤的方法。以一层平面框架为例,分别给出了框架梁含有裂缝、框架柱含有裂缝、框架梁和柱均含有裂缝的有限元模型,计算得到结构的应变模态,并通过应变模态小波分析来识别平面框架裂缝的位置。从识别结果发现,经小波去噪处理后应变模态小波系数的模极大值点能够有效识别框架结构的损伤,数值计算验证了方法的有效性。本文研究对工程结构损伤诊断有参考价值。 Based on wavelet transform of strain mode, the damage identification of plane frame was studied in this paper. Solving strain modal parameters of plane frames with cracks by means of the finite element theory, applying the gauss2 wavelet transform to analyse the stain mode of plane frame, and denoising the wavelet coefficients of the strain mode by db3 wavelet, then the location of crack of the plane frame could be identified by the maximum of wavelet coefficients after denoising. Therefore, this meth- od was proposed for damage identification of plane frames based on strain mode. Taking one-story plane frame for example, three finite element models, including a frame beam with a crack, each frame column with a crack, and each frame beam and column with a crack, were set up seperately, then the above- mentioned method was applied to identify the location of the crack. The results show that the method is effective, and it may be useful in damage identification and diagnosis in structures.
作者 管德清 黄燕
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第2期325-329,341,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50578018) 湖南省优秀博士论文基金资助项目
关键词 结构损伤识别 应变模态 小波交换 小波去噪 structural damage identification strain mode wavelet transform wavelet denoising
  • 相关文献

参考文献13

  • 1李德藻,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
  • 2Guido De Roeck, Ren Wei-xin. Structural damage identification using modal data. 2:test verifieation[J]. ASCE Journal of Structural Engineering, 2002,128 (1) :96-104.
  • 3Abdel Wahab M M. Damage detection in bridges using modal curvatures: application to a real damage scenario[J]. Journal of Sound and Vibration, 1999, 226(2) :217-235.
  • 4Yao G C, et al. Damage diagnosis of steel frame using vibrational signature analysis[J]. Journal of Engineering Mechanics, 1992,118(9) : 1949-1961.
  • 5Li Y Y, Cheng L, Yam L H, Wong W O. Identification of damage locations for plate-like structures using damage sensitive indices: strain modal approach [J]. Computers & Structures,2002, 80(25): 1881- 1894.
  • 6Hou Z, Noon K, Amand M, St R. Wavelet-based approach for structural damage detection[J]. Journal of Engineering Mechanics, 2000,126(7) : 677-683.
  • 7Huang C S, Su W C. Identification of modal parameters of a time invariant linear system by continuous wavelet transformation[J]. Mechanical Systems and Signal Processing ,2007,21 (4) : 1642-1664.
  • 8Ovanesova A V, Sudrez L E. Applications of wavelet transforms to damage detection in frame structures [J]. Engineering Structures, 2004,26 (1) : 39-49.
  • 9王俊,汪凤泉,韩晓林,周星德.基于小波分解的框架结构缺陷识别方法[J].振动.测试与诊断,2002,22(4):315-318. 被引量:6
  • 10李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析[J].土木工程学报,2003,36(5):52-57. 被引量:45

二级参考文献32

  • 1邱颖,任青文,朱建华.基于小波奇异性的梁结构损伤诊断[J].工程力学,2005,22(S1):146-151. 被引量:14
  • 2管德清,蒋欣.基于小波分析的Timoshenko梁裂缝识别研究[J].振动与冲击,2007,26(5):67-70. 被引量:15
  • 3[美]崔锦泰 程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 4[美]科恩L著 自居宪译.时-频分析:理论与应用[M].西安:西安交通大学出版社,1997.36—42.
  • 5Mallat S. Theory for multi-resolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
  • 6Mallat S. Multi-resolution approximation and wavelet orthonormal based of L^2(R). Transactions of American Mathematics Society, 1989, 16(3):761-767.
  • 7Marty Brenner. Wavelet Analyses of F/A-18 aeroelastic and aeroservoelastic flight test data. 38^th AIAA Structures, Structural Dynamics and Materials Conference.1997:696-698.
  • 8Martin Vetterli. Wavelets and filter banks t Theory and design. IEEE Transactions on Processing September,1992;40(9):2 218-2 222.
  • 9崔锦泰[美] 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 10LIEW K M, WANG Q. Application of wavelet theory for crack identification in structure[J]. Journal of Engineering Mechanics, 1998,124 (2) : 152-157.

共引文献68

同被引文献118

引证文献17

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部