期刊文献+

基于控制响应的时变系统模态参数辨识的改进子空间方法 被引量:1

An improved subspace method with time-varying system modal parameter identification based on control response data
下载PDF
导出
摘要 提出了一种基于系统控制信号激发的响应数据来辨识时变系统模态参数的改进子空间方法。该方法以系统控制响应信号建立系统的状态空间输出方程并构造了一个广义Hankel矩阵,通过对该矩阵做奇异值分解(SVD),用广义能观阵的估计代替输出矩阵,然后利用奇异值矩阵的正交性,有效地降低了噪声敏感性和计算量,从而容易地辨识出等效状态下的系统矩阵,最后采用转换矩阵辨识出时变系统的模态参数。通过理论分析、仿真和实验,讨论了不同信噪比对辨识结果的影响,验证了该方法的有效性。 A data-processing method concerning subspace identification is presented to improve the identification of time-varying system modal parameters from measured system control response data. Using system control response data, the identification procedure of this method includes the following steps. A state space output equation was first founded, and then a generalized Hankel matrix was constructed. After that, the state space system matrix of structure was identified by singular value decomposition (SVD) of the Hankel matrix. By replacing the output matrix with the estimation of generalized observ-ability matrix and utilizing the orthogonality of the singular value matrix, the sensitivity to noise and computational complexity were abated effectively, making it easier to distinguish the equivalent system matrix. Finally, the time-varying system modal parameters were identified by conversion matrix. The practicability of the proposed method has been verified by theoretical analysis, simulation and experi-mental data.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第2期356-361,共6页 Chinese Journal of Computational Mechanics
基金 湖北省流体机械与动力工程装备技术重点实验室开放基金(2007208010013)资助项目
关键词 时变系统 模态参数辨识 子空间方法 状态空间 time-varying system modal parameter identification subspace method state space
  • 相关文献

参考文献12

  • 1马革新,张大力,李衍达.基于子空间跟踪的状态空间系统辨识方法及其在时变系统辨识中的应用[J].信号处理,1998,14(4):346-352. 被引量:4
  • 2吴日强,于开平,邹经湘.改进的子空间方法及其在时变结构参数辨识中的应用[J].工程力学,2002,19(4):67-70. 被引量:10
  • 3杨利芳,于开平,庞世伟,邹经湘.用于线性时变结构系统辨识的子空间方法比较研究[J].振动与冲击,2007,26(3):8-12. 被引量:12
  • 4Guillaume Mercere, Laurent Bako and Stephane Lecoeuche. Propagator-based methods for recursive subspace modal identification [ J ]. Signal Processing, 2008,88:468-491.
  • 5Berkant Savas, David Lindgren. Rank reduction and volume minimization approach to state-space subspace system identification [J]. Signal Processing, 2006, 86 : 3275-3285.
  • 6Federico Felici, Jan-Willem and Michel Verhaegen. Subspace identification of MIMO LPV systems using a periodic scheduling sequence[J]. Automatica,2007, 43 : 1684-1697.
  • 7Per Sjovall,Thomas Abrahamsson. Substructure system identification from coupled system test data[J]. Mechanical Systems and Signal Processing, 2008, 22:15-33.
  • 8Huang Chen-far, Ko Wen-jiunn, Peng Yen-tun. Identification of modal parameters from measured input and output data using a vector backward auto-regressive with exogeneous model [J]. Journal of Sound and Vibration, 2004,276 : 1043-1063.
  • 9Joseph Lardies. Relationship between state-space and ARMAV approaehes to modal parameter identification[J], Mechanical Systems and Signal Processing, 2008,22:611-616.
  • 10Bart De Moor, Marc Moonen and Lieven Vandenberghe. A geometrical approach for the identification of state space models with singular value decompostion [ J ]. International Conference on Acoustics, Speech and Signal Processing, 1988,4:2244-2247.

二级参考文献22

共引文献40

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部