期刊文献+

时刻追踪多介质界面运动的动网格方法 被引量:2

Moving grid method in numerical simulation of compressible multi-material flows
下载PDF
导出
摘要 在对可压缩多介质流动的数值模拟中,定义介质界面为一种内部边界,由网格的边组成,界面边两侧对应两种不同介质中的网格。通过求解Riemann问题追踪介质界面上网格节点的运动,同时采用局部重构的动网格技术处理介质界面的大变形问题,并将介质界面定义为网格变形边界,以防止该边界上网格体积为负。运用HLLC格式求解ALE方程组得到整个多介质流场的数值解。最后从几个多介质流模型的计算结果可以看出,本文的动网格方法是可行的,而且可以时刻追踪介质界面的运动状态。 In the numerical simulation of compressible multi-material flows, the material interface is defined as a special internal boundary composed by unstructured grid edges, either side of which corresponds to a grid of one material. Riemann problem is solved in order to track the motion of the grid points on the material interface and local re-meshing technology is applied to deal with the large-scale de- formation of the moving grids. At the same time, the material interface is defined as a kind of grid-deforming boundary to avoid negative grid volumes near the interface. HLLC scheme is used to solve ALE formulations to obtain the resolutions of the whole multi-material fluid domain. Several multi-material modules are computed to indicate that the method in this paper is feasible and successful in tracking the motion state of the material interface.
作者 王兵 司海青
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第2期362-368,共7页 Chinese Journal of Computational Mechanics
关键词 可压缩多介质流 运动网格 网格局部重构 ALE方程组 HLLC格式 Compressible multi-material flows Moving Grids Grid local re-meshing technology ALE formulations HLLC Scheme
  • 相关文献

参考文献16

  • 1Fedkiw R P, Aslam T, Mrnrriman B, et al. A nonoscillatory Eulerian aprroach to interfaces in multimaterial flows (the ghost fluid method)[J]. JournalOf Computational Physics, 1999(152) :457-492.
  • 2Chen L, Li Y. A numerical method for two-phase flows with an interface [J ]. Environmental Modelling&Software, 1998(13) :247-255.
  • 3Shyue K. An efficient shock-capturing algorithm for compressible multicomponent problem[J]. Journal of Computational Physics, 1998(142) :208-242.
  • 4Abgrall R, Karni S. Computations of compressible multifluids[J]. Journal of Computational Physics, 2001(169) :594-623.
  • 5Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003 (190) : 651- 681.
  • 6Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J ]. Journal of Computational Physics, 1974,14(3) :227-253.
  • 7Thomas P D, Lombard C K. Geometric conservation law and its application to flow computations on moving grids [J]. AIAA Journal, 1978, 17 (10) : 1030- 1037.
  • 8李荫藩,宋松和,周铁.双曲型守恒律的高阶、高分辨有限体积法[J].力学进展,2001,31(2):245-263. 被引量:23
  • 9Toro E F, Spruce M, Spears W. Restoration of the contaet surface in the HLL-Riemann solver [J]. Shock Waves, 1994,4(1) : 25-34.
  • 10Chang C H, Liou M S. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM^+-up shceme[J]. Journal of Computational Physics, 2007,225 ( 1 ) : 840-873.

二级参考文献12

共引文献23

同被引文献22

  • 1Haas J. Interaction of weak shock waves and discrete gas inhomogeneities [ D ]. California, USA : Aeronautics Department, California Institute of Technology, 1984 : 97-102.
  • 2Hu X Y, Khoo B C. An interface interaction method for compressible multifluids [ J ]. Journal of Computational Physics ,2004,198 ( 1 ) :35-64.
  • 3Bourne N K, Field J E. Shock-induced collapse of single cavities in liquids [ J ]. Journal of Fluid Mechanics, 1992,244( 11 ) :225-240.
  • 4Ball G J, Howell B P, Leighton T G, et al. Shock- induced collapse of a cylinderical air cavity in water: A free-Largrange simulation [ J ]. Shock Waves, 2000, 10(4) :265-276.
  • 5Fedkiw R P,Aslam T,Merriman B,et al. A non-oscillatory Eulerian approach to interfaces in muhimaterial flows(the ghost fluid method ) [ J ]. Journal of Computational Physics ,1999,152(2) :457--492.
  • 6Liu T G. Ghost fluid method for strong shock impacting on material interface [ J ]. Journal of Computational Physics ,2003,190(2) :651-681.
  • 7Liu T G. The ghost fluid method for compressible gas- water simulation [ J ]. Journal of Computational Physics ,2005,204( 1 ) :193-221.
  • 8Dukowicz J K. A general, non-iterative Riemann solver for Godunov' s method [ J ]. Journal of Computational Physics, 1985,61 ( 1 ) : 119-137.
  • 9Yang Z, Mavriplis D J. Higher-order time integration schemes for aeroelastic applications on unstructured meshes[ J ]. AIAA Journal,2007,45 ( 1 ) : 138-150.
  • 10Marquina A, Mulet P. A flux-split algorithm applied to conservative models for muhicomponent compressible flows [ J ]. Journal of Computational Physics, 2003,185 (2) :120-138.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部