摘要
在对可压缩多介质流动的数值模拟中,定义介质界面为一种内部边界,由网格的边组成,界面边两侧对应两种不同介质中的网格。通过求解Riemann问题追踪介质界面上网格节点的运动,同时采用局部重构的动网格技术处理介质界面的大变形问题,并将介质界面定义为网格变形边界,以防止该边界上网格体积为负。运用HLLC格式求解ALE方程组得到整个多介质流场的数值解。最后从几个多介质流模型的计算结果可以看出,本文的动网格方法是可行的,而且可以时刻追踪介质界面的运动状态。
In the numerical simulation of compressible multi-material flows, the material interface is defined as a special internal boundary composed by unstructured grid edges, either side of which corresponds to a grid of one material. Riemann problem is solved in order to track the motion of the grid points on the material interface and local re-meshing technology is applied to deal with the large-scale de- formation of the moving grids. At the same time, the material interface is defined as a kind of grid-deforming boundary to avoid negative grid volumes near the interface. HLLC scheme is used to solve ALE formulations to obtain the resolutions of the whole multi-material fluid domain. Several multi-material modules are computed to indicate that the method in this paper is feasible and successful in tracking the motion state of the material interface.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2010年第2期362-368,共7页
Chinese Journal of Computational Mechanics
关键词
可压缩多介质流
运动网格
网格局部重构
ALE方程组
HLLC格式
Compressible multi-material flows
Moving Grids
Grid local re-meshing technology
ALE formulations
HLLC Scheme