期刊文献+

锂盐对交联PPCMA聚合物电解质性能的影响 被引量:1

Effect of Lithium Salt on Performance of Crosslinked PPCMA Gel Polymer Electrolyte
下载PDF
导出
摘要 以二氧化碳(CO2)、环氧丙烷(PO)和马来酸酐(MA)三元共聚反应合成聚甲基乙撑碳酸酯马来酸酐(PPCMA),再经交联和浸渍电解液活化,制备了性能优良的PPCMA凝胶聚合物电解质。研究发现,随着交联剂过氧化二异丙苯(DCP)的增加,交联PPCMA的玻璃化转变温度升高,热稳定性增强,PPCMA凝胶聚合物电解质的离子电导率先增加后减小,当DCP用量为1.2%、LiClO4浓度为1.1mol/dm3、LiBOB质量分数为1.3%时,PPCMA凝胶聚合物电解质的室温离子电导率达到最大值1.47×10-2S/cm。Li/PPCMAGPE/LiNi1/3Co1/3Mn1/3O2聚合物锂离子电池的首次放电容量为115.3mAh/g。 The poly(propylene carbonate)-co-(maleic anhydride) (PPCMA) polymer matrix was synthesized by terpolymerization of carbon dioxide,propylene oxide and maleic anhydride. The PPCMA matrix was then crosslinked and actived by absorbing liquid electrolyte to prepare a new PPCMA gel polymer electrolyte. With dicumyl peroxide (DCP) amount increasing,the Tg,the thermal stability increased and the ionic conductivity of the PPCMA gel polymer electrolyte firstly increased and then decreased. The ionic conductivity of the PPCMA gel polymer electrolyte with 1.2% amount of DCP reached the maximum value of 1.47×10-2 S/cm at room temperature when the LiClO4/ethylene carbonate(EC)/dimethyl carbonate(DMC) electrolyte content was 1.1 mol/dm3 and LiBOB content was 1.3%. The charge-discharge test results showed that the initial discharge capacity of Li/ PPCMA gel polymer electrolyte(GPE)/ LiNi1/3Co1/3Mn1/3O2 cell was 115.3 mAh/g at 0.1C current rate and in voltage range of 2.8 V~4.2 V at room temperature.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2010年第4期82-84,88,共4页 Polymer Materials Science & Engineering
基金 广东省科技计划项目(2009B010900025) 广东省粤港领域重点招标项目(2004A11004004)资助
关键词 凝胶聚合物电解质 锂离子电池 聚甲基乙撑碳酸酯马来酸酐 电化学性能 polymer electrolyte lithium-ion battery poly(propylene carbonate)-co-(maleic anhydride) electrochemical properties
  • 相关文献

参考文献11

  • 1ALASDAIR M C, SCOTT J L, EDWARD S, et al. Increasing the conductivity of crystalline polymer electrolytes [J ]. Nature, 2005, 433 : 50-53.
  • 2WALKOWIAK M, SCHROEDER G, GIERCZYK B, et al. New lithium ion conducting polymer electrolytes based on polyzilonxane grafted with Si-tripodand centers [ J ]. Electrochemistry Communications, 2007, 9: 1558-1562.
  • 3SANNIER L, BOUCHET R, SANTINACCII L, et al. Lithium metal batteries operating at room temperature based on different PEO-PVdF Separator configurations [ J ]. J. Electrochem. Soc., 2004, 151(6): 873-879.
  • 4PROSINI P P, PASSERINI S. A lithium battery electrolyte based on gelled polyethylene oxide[J]. Solid State Ionics, 2002, 146(1- 2) : 65-72.
  • 5SCROSATI B, CROCE F, PERSI L. Impedance spectroscopy study of PEO-based nanoeomposite polymer electrolytes [ J ]. J. Electrochem. Soe., 2000, 147: 1718-1721.
  • 6TAMP, ELI C C, BLOISE A C, ROSARIO A V, et al. Characterisation of PEO-Al2O3 composite polymer electrolytes[J]. Electrochimica Acta, 2002, 47( 11 ) : 1677-1682.
  • 7SIVAKUMAR M, SUBADEVI R, RAJENDRAN S, et al. Compositional effect of PVdF-PEMA blend gel polymer electrolytes for lithium polymer batteries[J]. Eur. Polym. J., 2007, 43: 4466- 4473.
  • 8RAJENDRAN S, SIVAKUMAR P. An investigation of PVdF/ PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications[J]. Physica B, 2008, 403: 509-516.
  • 9KALAPALA S, EASTEAL A J. Novel poly(methylmethaerylate)- based semi-interpenetrating polyeleetolyte gels for rechargeable lithium batteries[J]. J. Power Sourees, 2005, 147: 256-259.
  • 10ITOH T, HORII S, UNO T, et al. Influence of hyperbranched polymer structure on ionic conductivity in composite polymer electrolytes of PEO/hyporbranched polymer/BaTiO3/Li salt system [J]. Electrochimica Acta, 2004, 50:271-274.

同被引文献51

  • 1薛照明,陈春华.锂离子电池非水电解质锂盐的研究进展[J].化学进展,2005,17(3):399-405. 被引量:19
  • 2Azeez F, Fedkiw P S. Journal of Power Sources, 2010, 195:7627-7633.
  • 3Zhang S S, Xu K, Jow T R. J. Solid State Electrochem. , 2003, 7:147-151.
  • 4Zhang S S, Xu K, Jow T R. Journal of the Electrochemical Society, 2002, 149:A586-A590.
  • 5Krausea L J, Lamannaa W, Summerfielda J, Englea M, Korbaa G, Locha R, Atanasoski R. Journal of Power Sources, 1997, 68 : 320-325.
  • 6Sloop S E, Pugh J K, Wang S, Kerr J B, Kinoshita K. Electrochem. Solid-State Lett. , 2001, 4:A42-A44.
  • 7Zinigrad E, Larush-Asraf L, Gnanaraj J S, Sprecher M, Aurbach D. Thermochim. Acta, 2005, 438:184-191.
  • 8Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y. J. Electrochem. Soc. , 2000, 147:1322-1331.
  • 9Pasquier A D, Blyr A, Courjal P, Armatucci G, Gerand B, Tarascon J M. J. Electrochem. Soc. , 1999, 146:428-436.
  • 10Sasaki Y, Handa M, Sekiya S, Kurashimaa K, Usamib K. Journal of Power Sources, 2001, 97/98 : 561-565.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部