期刊文献+

基于小波包分析的战场被动声目标特征提取 被引量:1

The Feature Extraction from Battlefield Passive Acoustic Targets Based on Wavelet Packet Analysis
下载PDF
导出
摘要 针对战场环境存在噪声干扰的情况,提出了一种基于小波包分析的声目标特征参数提取方法。该方法将小波包分析和Mel倒谱分析相结合,提高了特征参数的鲁棒性。实验结果表明,在噪声条件下,基于小波包分析的平均识别率比MFCC参数提高6.78%,在信噪比为5dB时,识别率仍能达到94.5%。 Aimed at noise in battlefield, a method was proposed for feature extraction from acoustic targets based on wavelet packet analysis. The feature parameter combined wavelet packet analysis with Mel-frequency cepstrum analysis, and its robustness was improved. The experiment results show that the recognition rate based on wavelet packet analysis was improved by 6.78% compared with MFCC (DMel-frequency eepstrum coefficients) under noisy environment. When the SNR was 5dB. the recognition rate was up to 94.5%.
出处 《弹箭与制导学报》 CSCD 北大核心 2010年第2期240-242,共3页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 特征提取 小波包分析 鲁棒性 识别率 feature extraction wavelet packet analysis robust recognition rate
  • 相关文献

参考文献4

二级参考文献18

共引文献11

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部