期刊文献+

振荡器稳定度时域-频域参数转换的新方法

A New Approach to Converting the Parameters of Oscillator Instabilities from Time-Domain to Frequency-Domain
下载PDF
导出
摘要 依据相位起伏谱密度至阿伦方差的转换公式,提出了一种由阿伦方差至相位起伏谱密度转换基本数学模型,考虑到转换结果的不唯一性,采用相位起伏谱密度的通用幂律模型,给出了转换方法的约束最大似然解,并结合正则化方法消除模型求解过程中的病态特性.计算表明,由该方法转换所得的相位起伏谱密度与真实谱密度数据能很好地吻合;此外,还分析了正则化因子的选择与输入阿伦方差参数的选择对反演性能的影响. A new mathematical model is proposed to convert the oscillator instability parameters from Allan Variance to Spectrum Density (SD) of random phase fluctuations, which is the inversion of the classic transformation formula from SD to Allan Variance. The power-law model of the SD of oscillator phase fluctuations is introduced to the converting algorithm due to the fact that Allan Variance does not always determine a unique SD, which gives a constrained maximum likelihood solution of the inversion. Considering that the inversion problem is ill-posed, a regularization method is brought forward in the solving process. Simulation results show that the converted SD of phase fluctuations from Allan Variance parameters agrees well with the real SD function. Furthermore, the effects of the selected regularization factors and the input Allan variances are analyzed in detail.
出处 《测试技术学报》 2010年第2期117-123,共7页 Journal of Test and Measurement Technology
关键词 振荡器稳定度 阿伦方差 相位噪声 相位起伏谱密度 正则化 oscillator stability allan variance phase noise Spectrum Density of Phase Fluctuation (PFSD) regularization
  • 相关文献

参考文献9

  • 1Barnes J A,Chi A R,Cutler L S,et al.Characterization of frequency stability[J].IEEE Transactions on Instrument and Measurement,1971,20(2):105-120.
  • 2Allan D W,Barnes J A.A modified "Allan Variance" with increased oscillator characterization ability[C].USA,New Jersey:Proc.35th Ann.Freq.Control Symposium,1981:470-475.
  • 3Egan W F.An efficient algorithm to compute Allan variance from spectral density[J].IEEE Trans.on Instrumentation and Measurement,1988,37(2):240-244.
  • 4McGee J A,Howe D A.TheoH and Allan Deviation as power-law noise estimators[J].IEEE Trans.on Ultrasonics,Ferroelectrics and Frequency Control,2007,53(2):448-452.
  • 5Walter T.Characterizing frequency stability:A continuous power-law model with discrete sampling[J].IEEE Trans.on Instrumentation and Measurement,1994,43(1):69-79.
  • 6Gerber E A,Ballato A.Precision frequency control[M].New York:Academic Press,1985:191-204.
  • 7Allan D W.Time and frequency (time-domain) characterization,estimation,and prediction of precision clocks and oscillators[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,1987,UFFC-34:647-654.
  • 8Moon T K,Stirling W C.Mathematical methods and algorithms for signal processing[M].New York:Prentice Hall,Upper Saddle River,2000:561-565.
  • 9Greenhall C A.Spectral ambiguity of allan variance[J].IEEE Transactions on Instrumentation and Measurement,1998,47(3):623-627.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部