期刊文献+

基于改进遗传算法的Web关联规则日志挖掘的研究 被引量:1

Research on blog digging under Web association rules based on improved genetic algorithm
下载PDF
导出
摘要 本文提出了一种改进的遗传算法,用于优化Web日志挖掘的关联规则集。介绍了该算法的具体流程,提出新的染色体编码方案,新的编码配合本文的交叉操作使遗传过程更加优化,本文还对遗传的各步操作进行了改进,有效的避免遗传算法的早熟现象。 An improved genetic algorithm is proposed to optimize blog digging under Web association rules.The procedure of the algorithm is detalied and a new chromosome coding scheme is put forward to optimize the gentic process in combination with the intersection set.Improvement has been made to every step in genetic process to effectively avoid the premature phenomena in the genetic algorithm.
机构地区 渤海大学
出处 《渤海大学学报(自然科学版)》 CAS 2010年第1期73-78,共6页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金资助项目(No:60974071) 辽宁省教育厅重点实验室基金资助项目(No:2009s002)
关键词 WEB日志挖掘 数据挖掘 关联规则 遗传算法 blog digging data digging association rules gentic algorthm
  • 相关文献

参考文献9

  • 1Srivastava Jetal.Web usage mining:A proposal for inferentiak analysisi of Web server log files[C].In:Proc of 3rd Conf on Human Factors & the Web,Denver,Colorado,1997.
  • 2R.S.Michalski,Lbratko,and M.Kubat.Machine Learning and Data Mining Methods and Applications.Chichester:John Wiley&Sons Publisher,1998:223-240.
  • 3Ming Syan Chen,Jiawei Han,and Philip S.Yu.Data Minging:An Overview from a Database Perspective.IEEE Transactions On Knowledge And Data Engineering,1996(8):866-883.
  • 4陆建江,徐宝文,邹晓峰,康达周.模糊关联规则的并行挖掘算法[J].东南大学学报(自然科学版),2005,35(2):165-170. 被引量:6
  • 5杨学兵,安红梅.一种高效的关联规则增量式更新算法[J].计算机技术与发展,2007,17(1):108-110. 被引量:5
  • 6Han Jetal.Generalization-based data mining in object-oriented databases using an object-cube model Data and Knowledge Engineering.1998,Vol.25:55-57.
  • 7严蔚敏,吴伟民.数据结构[M].北京:清华大学出版社,2004:80-84.
  • 8汤亚玲,崔志明.遗传算法在Web关联挖掘中的应用研究[J].微电子学与计算机,2006,23(6):126-129. 被引量:4
  • 9赵伟,何丕廉,陈霞,谢振亮.Web日志挖掘中的数据预处理技术研究[J].计算机应用,2003,23(5):62-64. 被引量:62

二级参考文献29

  • 1汤亚玲,崔志明.基于遗传算法的Web用户聚类模型的研究[J].微电子学与计算机,2004,21(8):65-67. 被引量:4
  • 2(加)HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3Büchner AG, Mulvenna MD. Discovering Internet Marketing Intelligence through Online Analytical Web Usage Mining [ J]. ACM SIGMOD Record, 1998,27(4) :54 -61.
  • 4Agrawal R, Imieliski T, Swami A. Mining association rules between sets of items in large databases [A]. In: Proceedings of ACM SIGMOD Conference on Management of Data [C]. Washington, DC, 1993. 207-216.
  • 5Agrawal R, Srikant R. Fast algorithms for mining association rules [A]. In: Proceedings of the 1994 International Conference on Very Large Databases [C]. Santiago, Chile, 1994.487-499.
  • 6Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules [A]. In: Proceedings of the 1995 ACM-SIGMOD International Conference on Management of Data [C]. San Jose, CA, 1995. 175-186.
  • 7Cai C H, Fu A W C, Cheng C H, et al. Mining association rules with weighted items [A]. In: Proc of IEEE International Database Engineering and Applications Symposium [C]. Cardiff, Wales, UK, 1998. 68-77.
  • 8Agrawal R, Shafer J C. Parallel mining of association rules: design, implementation and experience [J]. Special Issue on Data Mining, IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 962-969.
  • 9Han E H, Karypis G, Kumar V. Scalable parallel data mining for association rules [A]. In: Proc ACM Conf Management of Data [C]. New York: ACM Press, 1997. 277-288.
  • 10Srikant R, Agrawal R. Mining quantitative association rules in large relational tables [A]. In: Proceedings of the ACM-SIGMOD Conference on Management of Data [C]. Montreal, Canada, 1996. 1-12.

共引文献102

同被引文献12

  • 1FAN Dong- jin, YU Peng, DU Peng, et al. A novel probabilistic model based fingerprint recognition algorithm [J]. Procedia Engineering, 2012, 46(29) : 201 -206.
  • 2CAO Kai, PANG Liao- jun, LIANG Ji -rain, et al. Fingerprint classification by a hierarchical classifier J]. Pattern Recognition, 2012, 46 (12) : 3186 -3197.
  • 3ILI Jing, CAO Jian, LU Kai - xuan. Aimprove the two - phase test samples representation method for palmprint recognition [ J ]. Optik - Interna- tional Journal for Light and Electron Optics, 2013, 124(24) : 6651 -6656.
  • 4Stjepan Oreski, Goran Oreski. Genetic algorithm - based heuristic for feature selection in credit risk assessment [ J]. Expert Systems with Appli- cations, 2014, 41(4): 2052-2064.
  • 5ZHANG Jain - guo, TAN Tie - niu, LIMa. Invariant texture segmentation via eireular gabor filters[ C]. Proceeding of the 16th International Conference on Pattern Recognition. Australian: Computer Society, 2002 : 1051 -4651.
  • 6CASIA - IrisVl [ DB/OL]. http://www, cbsr. ia. ac. cn/IrisDatabase, htm. 2004.
  • 7庄健,杨清宇,杜海峰,于德弘.一种高效的复杂系统遗传算法[J].软件学报,2010,21(11):2790-2801. 被引量:41
  • 8顾青,梁佐泉,汪治,徐祺.网络身份识别系统在电子商务中的研究与应用[J].计算机技术与发展,2011,21(11):247-249. 被引量:9
  • 9梁明,黄楠.人脸识别在退休金身份认证中的应用[J].计算机工程,2012,38(15):169-171. 被引量:2
  • 10张洁,景晓军,刘馨靖,李帅.一种基于模式熵的残缺指纹识别算法[J].电子与信息学报,2012,34(12):3040-3045. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部