摘要
图G的2-距离着色是正常的顶点着色,并且使G中距离不大于2的任意两个顶点着不同的颜色.图G的2-距离色数是图G的所有2-距离着色中所用色数的最小者,记为χ2d(G).探讨了完全立方Halin图Hn的2-距离着色,并得χ2d(H0)=4,5≤χ2d(Hn)≤6(n≥1).
The 2 - distance coloring of a graph G is a proper coloring such that no two vertices at distance less than or equal to 2 in Gare assigned the same color. The 2 - distance chromatic number of a graph G, denoted by X2d ≤(G) , is the smallest integer k for which G admits a star coloring with k colors. In this paper, we show that if Hn is a complete cubic Halin graph, then 5 ≤X2d ( Hn )≤6 ( n≥1 ).
出处
《重庆工商大学学报(自然科学版)》
2010年第2期108-110,113,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
重庆市科委自然科学基金计划项目资助(CSTC
2007BB2123)