期刊文献+

方形孔结构细胞支架非线性流固耦合数值计算 被引量:1

Numerical computation on the scaffolds models with regular square holes using nonlinear fluid-solid-coupling approaches
下载PDF
导出
摘要 目的讨论三维方形孔细胞支架不同孔隙率和不同孔半径的对细胞表面固体场和流体场的影响,以及将多孔支架视为刚性体和非线性变形体对计算结果的影响。方法采用一种直接耦合解法和和两种间接耦合解法,两种间接耦合解法分别是有限原法(固体模型)与有限差分法(流体模型)耦合、有限原法(固体模型)与有限体积法(流体模型)耦合。对3种流固耦合计算方法的可靠性进行验证。结果通过对构建的12种模型的计算(50、100和150μm三种边长和61%、65%、77%和84%四种孔隙率),获得了固体模型的应力场、应变场和位移场和流体模型的静压、速度、壁面剪应力和切变率,并对结果进行了比较分析。结论将多孔支架视为刚性体和非线性变形体计算结果有一定差别;孔隙率一定时不同孔半径以及孔半径一定时不同孔隙率条件下对固体场和流体场都有不同程度的影响。 Objective The influencing parameters of solid and fluid computing fields for the scaffolds models with regular square holes were discussed by nonlinear fluid-solid-coupling approaches.The numerical computational results of which the models were regarded as both rigid body and non-linear elasticity were compared as well.Method One direct fluid-solid-coupling approach and two indirect fluid-solid-coupling approaches were adopted,and the calculating reliability of three kinds of fluid-solid coupling methods was verified.Results The solid-fluid-coupling computational results are obtained in light of 12 kinds of scaffolds models which are constructed by 3 groups of square side length(50,100 and 150 μm)and 4 groups of porosity(61%,65%,77% and 84%).The field parameters of those solid models including stress,strain and displacement and those fluid models including static pressure,velocity,wall shear stress and strain rate are achieved and compared.Conclusion There appear some difference between the results of porous scaffold models as a rigid body and as non-linear elasticity.The different porosity with the same pore radius or the different pore radius with the same porosity would affect the field parameters of solid models and fluid models in varying degrees.
机构地区 天津大学力学系
出处 《医用生物力学》 EI CAS CSCD 2010年第1期4-10,共7页 Journal of Medical Biomechanics
基金 国家自然科学基金资助项目(308706060)
关键词 数值计算 流固耦合 支架 非线性 空隙率 应力 Numerical computation Fluid-soild-coupling method Scaffolds Nonlinear Porosity Stress
  • 相关文献

参考文献13

  • 1Flaherty JT, Pierce JE, Ferrans VJ, et aL Endothelial nuclear patterns in the canine artedal tree with p reference to hemodynamic events [ J ]. Circulation Research, 1 972, 30:. 23 -33.
  • 2Nerem RM, Levesque M J, Cornhill JF. Vascular endothelial morphology as an indicator of the pattern of blood flow [ J ]. Journal of Biomechanical Engineering, 1981, 103: 172-176.
  • 3Dewey CF, Bussolari SR, Gimbrone MA, et aL The dynamic response of vascular endothelial cells to fluid shear stress[ J]. Joumal of Biomechanical Engineering, 1981, 103 : 177-185.
  • 4Levesque M J, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress [J ]. Journal of Biomechanical Engineering, 1985, 107: 341-34?.
  • 5Ookawa K, Sato M, Ohshima N. Changes in microstructure of cultured porcine aortic endothelial cells in the early stage after applying fluid-imposed shear stress[ J]. Journal of Biomechanics, 1992, 25:1321-1328.
  • 6Freed LE, Vunjak-Novakovic X. Tissue engineering bioreactors. Principles of tissue engineering~ MJ. 2nd edn. San Diego: Academic Press. 2000.
  • 7Martin I, Obradovic B, Treppo S, et al. Modulation of the mechanical properties of tissue engineered cartilage [J]. Biorheology, 2000, 37:141-147.
  • 8Hutmacher DW. Scaffolds in tissue engineering bone and cartilager[J]. Biomaterials, 2000, 21:2529-2543.
  • 9Altman GH, Lu HH, Horan RL, et al. Advanced bioreactor with controlled application of multi-dimentional strain for tis- sue engineering [ J ]. Journal of Biomechanical Engineering, 2002, 124 :742-?49.
  • 10Davisson T, Sah RL, Ratcliffe A. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures[ J ]. Tissue Engineering, 2002, 8 (5) : 80?- 816.

同被引文献17

  • 1Sikavitsas Vl, Bancroft GN, Mikos AG. Formation of three- dimensional cell/polymer constructs for bone tissue engi- neering in a spinner flask and a rotating wall vessel bioreac- tor[J]. J Biomed Mater Res, 2002, 62(1) : 136-148.
  • 2Sikavitsas Vl, Bancroft GN, Holtorf HL, et al. Mineralized matrix deposition by marrow stromal osteoblasts in 3D per- fusion culture increases with increasing fluid shear forces [J]. Proc Nat Acad Sci USA, 2003, 100(25): 14683- 14688.
  • 3Ishihara Y, Sugawara Y, Kamioka H, et al.Ex vivo real- time observation of Ca2 + signaling in living bone in re- sponse to shear stress applied on the bone surface [ J ]. Bone, 2013, 53(1) : 204-215.
  • 4Bakker AD, Soejima K, Klein-Nulend J, et al. The produc- tion of nitdc oxide and prostaglandin E-2 by pdmary bone cells is shear stress dependent [ J]. J Biomech, 2001, 34 (5) : 671-677.
  • 5Turner CH, Takano Y, Owan I, et al. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats [ J ]. Am J Physiol Endocrinol Metab, 1996, 270 (4) : E634-639.
  • 6Vatsa A, Smit TH, Klein-Nulend J. Extracellular NO sig- nalling from a mechanically stimulated osteocyte [ J ]. J Bi- omech, 2007, 40( Suppl 1 ): S89-95.
  • 7Goldstein AS, Juarez TM, Helmke CD, et al. Effect of convection on osteoblastic cell growth and function in bio-degradable polymer foam scaffolds [ J ]. Biomaterials, 2001, 22(11) : 1279-1288.
  • 8Leclerc E, David B, Griscom L, et al. Study of osteoblas- tic cells in a microfluidic environment [J]. Biomaterials, 2006, 27(4) : 586-595.
  • 9Weinbaum S, Cowin SC, Zeng Y. A model for the excita- tion of osteocytes by mechanical loading-induced bone fluid shear stresses [J]. J Biomech, 1994, 27 (3) : 339-360.
  • 10Sun X, Gan Y, Tang T, et al. In vitro proliferation and dif- ferentiation of human mesenchymal stem cells cultured in autologous plasma derived from bone marrow [J]. Tissue Eng, 2008, 14(3) : 391-400.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部