期刊文献+

基于神经网络的城市夜间环境监控与预测 被引量:1

A Study on Monitoring and Prediction of Urban Night Environment Based on Neural Network
下载PDF
导出
摘要 因夜间天空亮度分布具有非线性变化特点,故引入神经网络算法,建立基于时间序列的夜天空亮度预测模型,夜天空亮度预测模型可为城市光污染防治提供评价依据。文章对神经网络的原理进行了论述,建立了基于时间序列预测模型。以测试数据为训练样本集,基于MATLAB(矩阵实验室,Matrix Laboratory的简称),采用改进的BP算法(误差反向传播算法)对网络进行学习训练,并对存在的误差进行了分析。基于时间序列BP神经网络的夜天空预测模型,当隐含层神经元数目为5,训练函数为L-M优化算法(trainlm)时,最大绝对误差可达到0.003 6 cd/m2,最大相对误差达到2.361 4%。结果表明,模型的运行结果与试验数据比较吻合,输出与目标矢量之间相关性也较好。 The purpose of a night sky brightness prediction model was for evaluation and prevention of urban light pollution.Owing to the nonlinear distribution of night sky brightness,the BP neural network algorithm based on time series theory was introduced.The principle of neural network was discussed and the prediction model based on time series theory was established.The test data as training samples were trained by improved BP algorithm with MATLAB(short for Matrix Laboratory),and their error were analyzed.When the number of hidden neurons was five and training function was L-M optimising algorithm called trainlm,the maximal absolute error could reach 0.0036 candela per square metre while the maximal relative error being 2.361 4%.It has shown that the modelling results were consistent with the experiment data,and the correlation between the outputs and target vectors was fairly satisfactory.
作者 张宝刚 刘鸣
出处 《上海环境科学》 CAS CSCD 2010年第2期52-54,65,共4页 Shanghai Environmental Sciences
基金 中国博士后科学基金项目,编号:20090450764 辽宁省教育厅项目,编号:2009B043
关键词 城市夜间环境 监测 预测 天空亮度 神经网络 Urban night environment Monitoring Prediction Sky brightness Neural network
  • 相关文献

参考文献7

  • 1Cinzano P, Falchi F, Elvidge C D. Naked-Eye Star Visibility and Limiting Magnitude Mapped from DMAP-OLS Sateltite Data. Mon. Not. R. Astron. Soc., 2001, (323) :34-46.
  • 2Albers'S, Duriscoe D. Modeling Light Pollution from Population Data and Implications for National Park Service Lands. George Wright Forum, 2001,18(4):56-68.
  • 3Cinzano P, Elvidge C D. Night Sky Brightness at Sites from DMAP-OLS Satellite Measurements. Mon. Not. R. Astron. Soc., 2004, (353) : 1107- 1116.
  • 4焦李成编著.神经网络计算.西安:西安电子科技大学出版社,1996.
  • 5陆健.基于BP神经网络和遗传算法的城市供水系统优化调度模型研究.南京:河海大学硕士学位论文,2006.
  • 6焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 7丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.55-87.

共引文献81

同被引文献10

  • 1谭满清,郝允祥.北京夜间天空亮度的研究[J].照明工程学报,1994,5(1):51-55. 被引量:7
  • 2Terrel G,Reed N O,David M M.The economics of globle light pollution[J].Ecological Economics,2010,69(3):658-665.
  • 3IDA Practical Guide. lntrouduction to light Pollution[ OL]. http:// docs. darksky, org/ PG/PGI--light pollution, pdf. 2010-11-28.
  • 4肖辉乾.CIE制订限制光污染标准的背景和依据[C]//中国第二届现代城市光文化论坛论文集,2006:58-63.
  • 5国家质量监督局,中国标准化委员会.照度测量方法[S].标准资料网http://cx.spsp.gov.cn/.
  • 6倪孟麟,陈大庆,倪泽成.24 h白昼和夜晚天空光亮度和色度连续测量研究-兼论夜天空光污染产生的原因[C]//CIE26th-中国照明学会(2005)学术年会论文集,2005.
  • 7北京天文馆.天文爱好者[J/OL].www.bjp.org.cn.2004:1-3.
  • 8Bortle J E.Introducing the Bortle dark-sky scale[J].Sky and Telescope,2001,101(2):126-129.
  • 9罗涛,林若慈,赵建平,王书晓.北京地区天空亮度的观测与研究[J].建筑科学,2013,29(8):1-4. 被引量:5
  • 10吕新广.对光谱三刺激值概念的理解[J].包装工程,2002,23(5):40-41. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部