期刊文献+

双向间接耦合有限元法预估电力电缆载流量 被引量:6

Bidirectional Indirect Coupled Finite Element Method for Estimating Ampacity of Power Cable
下载PDF
导出
摘要 建立了多导体电力电缆置于具有散热孔的托架上时3D有限元时谐磁场模型,在计及各金属涡流效应的条件下,得到所有导体单元的功率损耗密度。以此功率体密度损耗为载荷,建立了电缆系统的"热-流体"直接耦合场模型,求解了电缆系统各导体的温升,由此完成一次完整的"磁场"与"热-流体"场间接耦合的求解。由于电缆导体电阻率与温度密切相关,形成"磁场"与"热-流体"场间接耦合的双向耦合。反复迭代,可求解得到当热点为90°C时导体的电流,即为电缆的载流量。以无铠装单载流和有铠装三并联载流电缆为例,采用间接耦合法计算和测量了系统的总功率、电流分布、导体热点温度。计算和测量一致性说明了双向间接耦合有限元模型建立的正确性和计算结果的准确性,为进一步分析电力电缆系统的磁、热特性奠定了基础。 A 3-D finite element harmonic field model of multi-conductor power cables placed on a perforated metal tray is established. Power loss densities of all metallic elements with the skin effect are obtained. By taking the power densities as a load, the direct thermal-fluid coupled model of the cable system is set up and temperature rises are calculated. Therefore, the magnetic field and the thermal-fluid field indirect coupled solution for the cable system is achieved. Because the conductor resistivity is af- fected by its temperature, the coupled model of the cable system becomes a bi-indirect coupled model between the magnetic field and the thermal-fluid field. Using an iterative procedure, the ampacity of the cable system can be solved with a high temperature 90 ℃. Using the examples of a non-armored cable with the single current and an armored cable with the mode of three-parallel cable, the total power losses, the hottest point temperature of conductors and the current distributions are calculated and tested by the indirect coupled method. The match of calculated and tested results illustrates that the bidirectional indirect coupled model is valid and accurate. And it can be used for analyzing magnetic and thermal properties of power cable systems.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第2期133-139,共7页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 电力电缆 间接耦合场 有限元 功率损耗 温升 power cable indirect coupled-field finite element method (FEM) power losses temperature rises
  • 相关文献

参考文献14

  • 1Petty K A.Power plant electrical reference series,Vol 4 wire and cable[M].California; Palo Alto,1987.
  • 2Ferkal K,Poloujadoff M.Proximity effect and eddy currency losses in insulated cables[J].IEEE Trans on Power Delivery,1996,11(3):1171-1178.
  • 3Vaucheret P,Hartlein R A,Black W Z.Ampacity derating factors for cables in short segment of conduit[J].IEEE Trans on Power Delivery,2005,20 (2):560-565.
  • 4Al-Saud M S,El-Kady M A,Findlay R D.A novel finite element optimization algorithm with application to power cable thermal circuit design[C]//Proc Power Engineering Society General Meeting.Tampa,USA:IEEE,2007:1-8.
  • 5Li H J.Estimation of thermal parameters and prediction of temperature rise in crane power cables[C]// Proc Generation,Transmission and Distribution.UK:IET,2004,151(3):355-360.
  • 6Ertas K A.Thermal analysis for determination of current carrying capacity of PE and XLPE insulated power cables using finite element method[C]//Proc MELECON2004.Dubrovnik,Croatia:IEEE,2004 (3):905-908.
  • 7梁永春.复杂条件下电力电缆温度场和载流量计算方法研究[D].西安:西安交通大学电气工程学院,2008.
  • 8Burnett Y,Du J.Current distribution in single-core cables connected in parallel[C]//Proe Generation,Transmission and Distribution.UK:IET,2001,148 (5):406-412.
  • 9Du Y,Huan Y Z.Current distribution in parallel single-core cables on metal tray[C]//Proc Industry Application Conference.New Orleans,USA:IEEE,2007:1499-1504.
  • 10Du Y,Burnett J.Experimental investigation into harmonic impedance of low-voltage cables[C]// Proc Generation,Transmission and Distribution.UK:IET,2000,147(6):322-328.

二级参考文献1

  • 1Heinho1d L et a1 门汉文等译.电力电缆及电线[M].北京:电力出版社,2001..

共引文献16

同被引文献75

引证文献6

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部