期刊文献+

一种参数动态调整的自适应微粒群优化算法 被引量:4

Adaptive Particle Swarm Optimization Algorithm with Dynamically Adjusting Parameters
下载PDF
导出
摘要 提出了一种参数动态调整的自适应微粒群优化算法.针对微粒群算法中不同适应度值的微粒所需要的搜索能力不同,引入微粒相对优秀度概念,通过相对优秀度来动态调整惯性权重和加速因子,有效地调节算法的全局和局部搜索能力,保持了微粒的个性.利用三个Benchmark函数进行数值试验,仿真结果表明,算法稳定,具有较好的收敛性能. Aiming at particles with different fitness value needing for different search capabilities, this paper presents an adaptive particle swarm optimization algorithm with dynamically adjusting parameters. The concept of particle relative excellent degree is introduced to dynamically adjust inertia weight and accelera- tion coefficient, which improves the performance of the globe search and local search and maintains particle individuality. Experiment simulations of three benchmark functions show that the proposed algorithm has powerful convergence ability and good stability.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2010年第1期122-126,共5页 Natural Science Journal of Xiangtan University
基金 湖南省教育厅科研项目(07C167) 湖南省科技计划项目(2009GK3036) 湖南省自然科学基金项目(09JJ5042)
关键词 群智能 微粒群优化 惯性权重 加速因子 Swarm intelligence particle swarm optimization inertia weight acceleration coefficient
  • 相关文献

参考文献7

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization[C]. Proc of IEEE International Conference on Neural Networks. Piscataway : IEEE Press, 1995:1 942-1.
  • 2SHI Y, EBERHART R C. A modified particle swarm optimizer[C].Proc of the IEEE International Conference on Evolutionary Computation. NJ :IEEE Press, 1998 : 69- 73.
  • 3CHATTERJEE A,SIARRY P. Nonlinear inertia weight Variation for dynamic adaptation in particle swarm optimization[J]. Computers and operations research,2004,33(3) :859-871.
  • 4张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法[J].控制与决策,2008,23(11):1253-1257. 被引量:97
  • 5陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 6RATNAWEERA A, HALGMUGE S K.WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation,2004,8(3): 240-255.
  • 7陈水利,蔡国榕,郭文忠,陈国龙.PSO算法加速因子的非线性策略研究[J].长江大学学报(自科版)(上旬),2007,4(4):1-4. 被引量:27

二级参考文献19

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 3冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 4韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 5Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 6Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press,1998: 69-73.
  • 7Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 101-106.
  • 8Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notes in Computer Science. Chicago: Springer-Verlag, 2003: 134-139.
  • 9Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension[C]. Proe of the IEEE Conf on Evolutionary Computation. Honolulu: IEEE Inc, 2002: 1474-1479.
  • 10Clerc M. The swarm and queen.. Towards deterministic and adaptive particle swarm optimization [C]. Proc of IEEE Conf on Evolutionary Computation. Washington D C, 1999: 1951-1957.

共引文献425

同被引文献26

  • 1傅博.基于模拟退火遗传算法的软件测试数据自动生成[J].计算机工程与应用,2005,41(12):82-84. 被引量:28
  • 2张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 3赵亮,王建民,孙家广.软件测试准则的有效性度量研究[J].计算机研究与发展,2006,43(8):1457-1463. 被引量:12
  • 4RUSSELL C,EBERHART,SHI Yuhui,et al.Swarm intelligence[M].San Francisco:Morgan Kaufmann Publishers,2001.
  • 5KENNEDY J,EBERHART R C.Particle swarm optimization:Proceedings of IEEE Int1 Conf Oft Neural Networks,1995[C].Piscataway,NJ:IEEE Press,c1995.
  • 6RATNWEERA A,HALGAMUGE S.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].Evolutionary Computation,2004,8(3):240-255.
  • 7KRISHNA T C,MANJAREE P,LAXMI S.Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch[J].International Journal of Electrical Power & Energy Systems,2009,31(6):249-257.
  • 8NIMA A,HASSAN R S.Daily hydrothermal generation scheduling by a new modified adaptive particle swarm optimization technique[J].Electric Power Systems Research,2009,31(6):249-257.
  • 9DAVID W,HOSMER,STANLEY Lemeshow.Applied logistic regression[M].2nd ed.New York:Wiley-Interscience Publication,2000.
  • 10陈水利,蔡国榕,郭文忠,陈国龙.PSO算法加速因子的非线性策略研究[J].长江大学学报(自科版)(上旬),2007,4(4):1-4. 被引量:27

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部