期刊文献+

基于Fukunaga-Koontz变换的高光谱图像异常检测 被引量:1

Fukunaga-Koontz Transform Based Anomaly Detection Algorithm for Hyperspectral Imagery
下载PDF
导出
摘要 高光谱图像异常检测算法通常是基于数据变换,在新的特征空间中进行的。针对WDEST算法没有使得异常目标和背景在新的特征空间中有较好的分离,提出了一种基于Fukunaga-Koontz(FKT)变换的高光谱图像异常检测算法。该算法利用FKT对高光谱图像局部窗口中数据进行变换,使得在新的特征空间中异常目标和背景有相同的特征向量和互补的特征值,较之WDEST算法得到了更好的分离,在有效提高检测概率的同时降低了虚警概率;经与RX算法比较表明,该算法对于较大异常有更好的适应性,并用真实数据进行实验证明了算法的有效性。 Anomaly detection algorithms are commonly based on transforming data into a new space to implement for hyperspectral imagery. Aiming at WDEST algorithm failed to discriminate anomaly and background in a new space, a new method based Fukunaga-Koontz transform (FKT) is proposed. Utilizing FKT to transform data in local windows into a new space, anomaly and background have same eigenvectors and complimentary eigenvalues. Compared to WDEST, a higher degree of discrimination of anomaly and background is generated and results in a reduction in both the miss rate and the obvious false alarm rate. In addition, the proposed approach has better adaptive to larger anomaly than RX algorithm. The effectiveness of the proposed method is validated by experimental results obtained from real data.
出处 《红外技术》 CSCD 北大核心 2010年第4期195-197,208,共4页 Infrared Technology
基金 安徽省自然基金项目 编号:070415217
关键词 异常检测 Fukunaga—Koontz变换 WDEST RX 高光谱 anomaly detection, Fukunaga-Koontztransform, WDEST, RX, hyperspectral
  • 相关文献

参考文献6

  • 1Hsuan Ren, Chien-Wen Chen, Hsien-Ting Chen. Weighted anomaly detection for hyperspectral remotely sensed images[C]//Proc, of SPIE, 2005, 5;995: 599507.
  • 2I.S.Reed, X.Yu. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.
  • 3H. Kwon, S.Z. Der and N. M. Nasrabadi. Adaptive anomaly detection using subspace separation for hyperspectral imagery[J]. Optical Engineering, 2003, 42(11): 3342-3351.
  • 4Weimin Liu, Chein-I Chang. A nested spatial window-based approach to target detection for hyperspectral imagery[C]//2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'04), 2004(1): 266-268.
  • 5夏项团,朱进兴,刘学明,龚惠兴.地球反照辐射对太阳探头影响的研究[J].红外与毫米波学报,2008,27(1):27-30. 被引量:8
  • 6S. Ochilov, M. S. Alam, A. Bal. Fukunaga-Koontz atransform based dimensionality reduction for hyperspectral imagery[C]//Proc.of SPIE, 2006, 6233: 62332A.

二级参考文献7

  • 1李庆利,薛永祺,王建宇,白智全.PHI高光谱图像的大气校正算法[J].红外与毫米波学报,2006,25(4):316-320. 被引量:8
  • 2黄静,邱崇践,张艳武.一种利用卫星红外遥感资料反演晴空大气参数的物理统计方法[J].红外与毫米波学报,2007,26(2):102-106. 被引量:4
  • 3伍拉德EW.球面天文学[M].北京:测绘出版社,1984..
  • 4龚惠兴.外层空间太阳敏感器背景干扰特性的估计.红外物理与技术,1978,5:18-20.
  • 5宗贝克M.V.空间天文学和天体物理学手册.北京:科学出版社,1987.
  • 6Shun Lin-Liang, Hong Liang-Fang. An improved atmospheric correction algorithm for hyperspectral remotely sensed imagery [ J]. IEEE Trans. Geosci. Remote Sensing, 2004, 1(2) :112-117.
  • 7Jean Meeus. Astronomical Algorithms [ M ]. Virginia, Willmann-Bell. Inc. Richmond, 1991,71.

共引文献7

同被引文献55

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部