期刊文献+

基于径向基神经网络的分数阶混沌系统控制 被引量:5

Control of Fractional Order Chaotic Systems via RBF Neural Network
下载PDF
导出
摘要 针对分数阶混沌系统的控制问题,提出了一种基于径向基函数(RBF)神经网络的控制方法.利用RBF神经网络对混沌系统的非线性进行补偿,并且神经网络的权值可以通过调整律在线调整.在有参数干扰和外部扰动的情况下,所设计的控制器仍能使得控制误差渐近收敛到零.以分数阶Liu混沌系统为例施加控制,仿真结果验证了该方法的有效性和鲁棒性. For the control of fractional order chaotic systems, a new method based on RBF (radial basis function) neural network is presented. RBF neural network is designed for the nonlinear compensation in chaotic systems, and the weights of RBF neural network can be adjusted on-line via the update law. The proposed controller can make the control error converge to zero asymptotically, even with parametric perturbation and external disturbances. Chaos control for fractional order Liu system is implemented as an example. The simulation results prove the effectiveness and the robustness of the proposed method.
出处 《信息与控制》 CSCD 北大核心 2010年第2期142-146,共5页 Information and Control
关键词 分数阶 混沌控制 RBF神经网络 fractional order chaos control RBF neural network
  • 相关文献

参考文献6

二级参考文献103

共引文献158

同被引文献69

  • 1谭文,王耀南.Synchronization of an uncertain chaotic system via recurrent neural networks[J].Chinese Physics B,2005,14(1):72-76. 被引量:2
  • 2刘超彬,乔俊飞.污水处理过程中对泥龄的模糊神经网络控制[J].信息与控制,2006,35(1):16-20. 被引量:6
  • 3席剑辉,韩敏.多重分支时间延迟神经网络的混沌预测研究[J].信息与控制,2007,36(2):181-186. 被引量:6
  • 4张平,苑明哲,王宏.基于国际评价基准的溶解氧控制方法研究[J].信息与控制,2007,36(2):199-203. 被引量:13
  • 5Gracia M D, Grau P, Huete E, et al. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verifi- cation[J]. Water Research, 2009, 43(18): 4626-4642.
  • 6Civelekoglu G, Yigit N O, Diamadopoulos E, et al. Modelling of COD removal in a biological wastewater treatment plant us- ing adaptive neuro-fuzzy inference system and artificial neural network[J]. Water Science & Technology, 2009, 60(6): 1475- 1487.
  • 7Du H B, Shao H H, Yao P J. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 509-514.
  • 8Faur C, Cougnaud A, Dreyfus G, et al. Modelling the break- through of activated carbon filters by pesticides in surface wa- ters with static and recurrent neural networks[J]. Chemical En- gineering Journal, 2008, 145(1): 7-15.
  • 9Thiery F, Grieu S, Traore A. Integration of neural networks in a geographical information system for the monitoring of a catch- ment area[J]. Mathematics and Computers in Simulation, 2008, 76(5): 388-397.
  • 10Yuzgec U. Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process[J]. IEEE Transactions on Neural Networks, 2008, 19(7): 1231-1242.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部