摘要
本文对直接使用采样数据进行连续系统的闭环子空间辨识问题进行了研究.将线性滤波方法与基于主元分析的子空间辨识相结合,利用参考输入或者外部激励信号的高阶滤波变换的正交投影变量作为辅助变量,提出了一种新的连续时间系统闭环子空间辨识算法.数值仿真表明了与其他算法相比,本文提出的算法具有很好的辨识效果.
The problem of closed-loop subspace identification for continuous-time models from sampled data directly is considered. Combining subspace identification based on principal component analysis and linear filter method, a novel closed-loop subspace identification algorithm for continuous-time model is proposed by using the orthogonal projection variable of high order filter transform of reference inputs or exogenous inputs. The identification performance of the proposed algorithms is illustrated by numerical simulation comparing with other algorithms.
出处
《信息与控制》
CSCD
北大核心
2010年第2期152-157,共6页
Information and Control
基金
国家自然科学基金资助项目(60674086)
浙江省自然科学基金资助项目(2007C21173)
关键词
系统辨识
子空间方法
闭环辨识
连续系统
system identification
subspace method
closed-loop identification
continuous-time system