期刊文献+

连续时间模型的闭环子空间辨识 被引量:2

Closed-loop Subspace Identification for Continuous-time Models
下载PDF
导出
摘要 本文对直接使用采样数据进行连续系统的闭环子空间辨识问题进行了研究.将线性滤波方法与基于主元分析的子空间辨识相结合,利用参考输入或者外部激励信号的高阶滤波变换的正交投影变量作为辅助变量,提出了一种新的连续时间系统闭环子空间辨识算法.数值仿真表明了与其他算法相比,本文提出的算法具有很好的辨识效果. The problem of closed-loop subspace identification for continuous-time models from sampled data directly is considered. Combining subspace identification based on principal component analysis and linear filter method, a novel closed-loop subspace identification algorithm for continuous-time model is proposed by using the orthogonal projection variable of high order filter transform of reference inputs or exogenous inputs. The identification performance of the proposed algorithms is illustrated by numerical simulation comparing with other algorithms.
出处 《信息与控制》 CSCD 北大核心 2010年第2期152-157,共6页 Information and Control
基金 国家自然科学基金资助项目(60674086) 浙江省自然科学基金资助项目(2007C21173)
关键词 系统辨识 子空间方法 闭环辨识 连续系统 system identification subspace method closed-loop identification continuous-time system
  • 相关文献

参考文献31

  • 1Gamier H, Wang L P. Identification of continuous-time models from sampled data[M]. Berlin, Germany: Springer-Verlag, 2008.
  • 2Gamier H, Mensler M, Richard A. Continuous-time model identification from sampled data: Implementation issues and performance evaluation[J]. International Journal of Control, 2003, 76(13): 1337-1357.
  • 3Rao G P, Unbehauen H. Identification of continuous-time systems[J]. IEE Proceedings: Control Theory and Applications, 2006, 153(2): 185-220.
  • 4Young P C, Gamier H. Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems[J]. Environmental Modelling & Software, 2006, 21(8): 1055-1072.
  • 5Van den Hof E Closed-loop issues in system identification[J]. Annual Reviews in Control, 1998, 22: 173-186.
  • 6Bastogne T, Gamier H, Sibille E A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process[J]. International Journal of Control, 2001, 74(2): 118-132.
  • 7Haverkamp L R J. State space identification - Theory and practice[D/OL]. Delft, Netherlands: Electrical Engineering, Mathematics, Computer Sci Delft University of Technology, 2001. [2008-10-14]. http://repository.tudelft.nl/assets/uuid:c6 fbb4d5-a295-4877- 9c05-a8338ab46edb/emc_ haverkamp_ 20010213.PDF.
  • 8Haverkamp B R J, Chou C T, Verhaegen M H, et al. Identification of continuous-time MIMO state space models from sampled data, in the presence of process and measurement noise[C] //The 35th IEEE Conference on Decision and Control. Piscataway, NJ, USA: tEEE, 1996: 1539-1544.
  • 9Johansson R, Verhaegen M, Chou T C. Stochastic theory of continuous-time state-space identification[J]. IEEE Transactions on Signal Processing, 1999, 47(1): 41-51.
  • 10Li W H, Raghavan H, Shah S. Subspace identification of continuous time models for process fault detection and isolation[J]. Journal of Process Control, 2003, 13(5): 407-421.

同被引文献26

  • 1靳其兵,刘晓雷.基于主元分析的子空间辨识算法[J].计算机仿真,2007,24(3):101-103. 被引量:3
  • 2卢娟,刘飞.基于规范变量分析的子空间辨识方法及应用[J].计算机工程与应用,2007,43(11):54-56. 被引量:3
  • 3李远禄,于盛林,郑罡.非整数阶系统频域辨识的递推最小二乘算法[J].信息与控制,2007,36(2):171-175. 被引量:6
  • 4丁锋.系统辨识-辨识方法性能分析[M].北京:科学出版社,2014.
  • 5Ding F, Liu X P, Liu G. Gradient based and least-squares based iterative identification methods for OE and OEMA systems[ J]. Digital Signal Processing, 2010, 20 (3) : 664 - 677.
  • 6Ding F, Shi Y, Chen T. Auxiliary model based least-squares identification methods for Hammerstein output-error systems [ J ]. Systems and Con- trol Letters, 2007, 56(5): 373-380.
  • 7Shen Q Y, Ding F. Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separa- tion principle [ J ]. Nonlinear Dynamics, 2014, 75 (4) : 709 - 716.
  • 8Wang D Q, Chu Y Y, Yang G W, et al. Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems[ J]. Mathematical and Computer Modelling, 2010, 52(1/2) : 309 -317.
  • 9Yu B, Fang H, Lin Y, et al. Identification of Hammerstein output eTor systems with two-segment nonlinearities: Algorithm and applications [ J ]. Journal of Control and Intelligent Systems, 2010, 38 (4) : 194 - 201.
  • 10Ding F, Chen T. Identification of Hammerstein nonlinear ARMAX systems[ J]. Automatica, 2005, 41 (9) : 1479 -1489.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部