期刊文献+

一种基于过程神经元网络的非线性动态系统辨识模型及应用 被引量:2

An Identification Model of Nonlinear Dynamic System Based on Process Neural Network and Its Application
下载PDF
导出
摘要 针对复杂非线性动态系统辨识问题,提出了一种基于过程神经元网络(PNN)的辨识模型和方法.根据系统待辨识的模型结构和反映系统模态变化特征的动态样本数据,利用PNN对时变输入/输出信号的非线性变换机制和自适应学习能力,建立基于PNN的系统辨识模型.辨识模型能够同时反映多输入时变信号的空间加权聚合以及阶段时间效应累积结果,直接实现非线性系统输入/输出之间的动态映射关系.文中构建了用于并联结构和串-并联结构辨识的PNN模型,给出了相应的学习算法和实现机制,实验结果验证了模型和算法的有效性. Aiming at the identification of complex nonlinear dynamic system, an identification model and method based on process neural network (PNN) is proposed. According to the model structure which is to be identified and the dynamic sample data which reflect system modal verification characteristics, a system identification moctel based on PNN is set up using nonlinear transform mechanism and self-adaptive learning ability of PNN to the relationship between time-vaxying input signals and output signals. The identification model can reflect spatial weighted aggregation and time effect accumulation result to multi-input time-varying signals at the same time, and the dynamic input-output mapping relationship of nonlinear system can be found directly. A PNN model for parallel structure and serial-parallel structure is constructed, and the corresponding learning algorithm and realization mechanism are given. The experiment results verify the effectiveness of the model and algorithm.
出处 《信息与控制》 CSCD 北大核心 2010年第2期158-163,共6页 Information and Control
基金 国家自然科学基金资助项目(60572174) 黑龙江省教育厅科学技术研究项目(11521013) 黑龙江省自然科学基金资助项目(ZA2006-11) 黑龙江省科技攻关项目(GZ07A103)
关键词 非线性动态系统 辨识模型 过程神经元网络 nonlinear dynamic system, identification model PNN (process neural network)
  • 相关文献

参考文献9

  • 1Cheng T, Lewis F L, Abu-Khalaf M. A neural network solution for fixed-final time optimal control of nonlinear systems[J]. Automatica, 2007, 43(3): 482-490.
  • 2Kumaresan N, Balasubramaniam, P. Optimal control for stochastic nonlinear singular system using neural networks[J]. Computers and Mathematics with Applications, 2008, 56(9): 2145-2154.
  • 3Waibel A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(3): 328- 339.
  • 4Tsoi A C, Back A D. Locally recurrent globally feedforward networks: A critical review of architectures[J]. IEEE Transactions on Natural Networks, 1994, 5(2): 229-239.
  • 5Draye J P S, Pavisic D A, Cheron G A, et al. Dynamic recurrent neural networks: A dynamical analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(5): 692-706.
  • 6He X G, Liang J Z. Process neural networks[C]//Conference on Intelligent Information Processing. Beijing, China: Publishing House of Electronics Industry, 2000: 143-146.
  • 7McCuIIoch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 1990, 52(1/2): 99-115.
  • 8何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44. 被引量:143
  • 9许少华,何新贵,刘坤,王兵.关于连续过程神经元网络的一些理论问题[J].电子学报,2006,34(10):1838-1841. 被引量:34

二级参考文献11

  • 1刘晓鸿,戴汝为.线性阈值单元神经元网络的图灵等价性[J].计算机学报,1995,18(6):438-442. 被引量:5
  • 2Zhang L I,Nature,1998年,395卷,37页
  • 3Zhang Li I,Tao Huizhong,Holt C E,et al.A critical window for cooperation and competition among developing retinotectal synapses[J].Nature,1998,395:37-44.
  • 4He Xin-Gui,Liang Jiu-Zhen.Process neural networks[A].World Computer Congress 2000,Proceedings of Conference on Intelligent Information Processing[C].Beijing:House of Electronics Industry,2000.143-146.
  • 5McCulloch W S,Pitts W H.A logical calculus of the ideas immanent in neuron activity[J].Bulletin Mathematical Biophysics,1943,5(1):115-133.
  • 6Waibel A,et al.Phoneme recognition using time delay NN[J].IEEE Trans ASSP,1989,37(2):328-339.
  • 7Tsoi A C.Locally recurrent globally feedforword networks[J].A Critical Review of Architectures IEEE Transactions on Natural Networks.1994,(5):229-239.
  • 8Draye J S,et al.Dynamic recurrent NN:A dynamical analysis[J].IEEE Trans SMC(B),1996,26:692-706.
  • 9Mozer M C.Neural net architectures for temporal sequence processing[A].Time Series Prediction:Forecasting the Future and Understanding the Past[C].New York:Addison-Wesley,1993.243-264.
  • 10欧阳楷,邹睿,刘卫芳.基于生物的神经网络的理论框架──神经元模型[J].北京生物医学工程,1997,16(2):93-101. 被引量:15

共引文献152

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部