摘要
结合数据仓库(DW)和统计过程控制(SPC)相关理论,依据钢铁企业生产过程的特点,提出了适合钢铁企业的过程数据分析系统的通用架构和功能.之后举例说明了过程数据分析中相关参数选择的过程.详细介绍了利用改进的支持向量机方法进行性能参数预测以及采用粗糙集方法进行规则生成的过程.实验证明,生成的预测模型以及规则能够为企业提供决策支持,满足了企业需求.
The general framework and function of process data analysis system are introduced by integrating theories of data warehouse (DW) and statistical process control (SPC) with characteristics of the production process in iron & steel enterprise. And then an example of selecting relative parameters in process data analysis is given. Lastly the process of performance parameters prediction by improved support vector machine (SVM) and the process of generating rules set by rough set are explained in detail. Experiments show that the generated prediction model and rules can support enterprise's decision and meet enterprise's requirement.
出处
《信息与控制》
CSCD
北大核心
2010年第2期238-242,共5页
Information and Control
关键词
数据仓库
过程数据
K近邻算法
主成分分析
支持向量机
粗糙集
data warehouse
process data
K-nearest neighbor (KNN)
principal component analysis (PCA)
support vector machine (SVM)
rough set