期刊文献+

一类Kantorovich型算子逼近阶的另一种估计

On the rate of convergence of a Kantorovich type operators
下载PDF
导出
摘要 在CHEN和ZENG的研究基础上,利用概率论的相关结论及分析方法重新对一类Kantorovich型算子对局部有界函数的逼近阶进行计算,得到了另一种形式估计式.为研究这一类算子的逼近性质提供另一种思路,并且该估计式也具有相应的精确度. This paper reestimates the rate of convergence of a kind of a Kantorovich variant of the Bleimann-Butzer-Hahn operators for locally bounded function by means of some techniques of probability theory and anaIysis methods on basis of Chen and Zeng, which provides another method of study of this kind of operators. And another form of estimative formula with relevant precise is given.
作者 陈玲菊
机构地区 闽江学院数学系
出处 《闽江学院学报》 2010年第2期27-30,共4页 Journal of Minjiang University
关键词 Bleimann—Butzer-Hahn算子 局部有界函数 逼近阶 估计式 Bleimann-Butzer-Hahn operators Locally bounded function rate of convergence estimative formula
  • 相关文献

参考文献8

  • 1Bleimann G, Butzer P L, Hahn L. A Bernstein-type operator approximating continuous functions on the semi-axis[J]. Ederl Akad Wetensch Indag Math, 1980 (42) : 255 - 262.
  • 2Bojanic R, Vuilleumier M. On the rate of convergence of Fourier-Legendre series of functions of bounded variation[J]. Approx Theory, 1981(31 ) :67 -79.
  • 3Cheng F. On the rate of convergence of bemstain polynomials of bounded variation [ J]. Approx Theory, 1983 (39) :259 -274.
  • 4Guo S, Kan M K. On the rate of convergence of some operators on function of bounded variation[J]. Approx Theory, 1989(58) : 90 - 101.
  • 5Zeng X M. Pirious A. On the rate of convergence of two Bemstein-B6zier type operators for bounded variation functions [ J ]. Approx Theory, 1998 (95) :368 - 387.
  • 6Chen L J, Zeng X M. Rate of convergence of a new type Kantorovich uariant of Blein-Butzer-Hahn operators [ EB/OL]. (2009 - 11 - 16) [ 209 - 11 - 20 ]. http ://www. hindawi, com/journa/s/jia/2009/852897, htm.
  • 7Feller W. An introduction to probability theory and its applications [ M ]. New York:[ s. n], 1966:515.
  • 8Zeng X M. A bounds for bemstein basiss functions and Meyer-Konig and Zeller basis functions [ J ]. Mathematical Analysis and Applications ,2001,6(5 ) :563 - 575.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部