期刊文献+

基于CaR风险测度下的保险投资决择 被引量:3

Optimal investment decision for insurance bounded by CaR
下载PDF
导出
摘要 用CaR测度保险公司的整体性风险,讨论了在可接受风险水平限制下,保险公司如何选择最大化终期财富的投资策略的问题.利用最优化原理,得到保险公司的最优投资策略和有效边界的显式表达式,接着分析了最优投资策略和有效边界在保费、索赔量以及索赔风险影响下的动态性质,最后用实际数据对保险公司如何选择最优投资策略进行了模拟. The integral risk of insurance company was measured with CaR and the problem of how to select the optimal investment strategies maximizing terminal wealth for insurer was discussed in this paper. By the optimization principle, the explicit expressions of optimal investment strategy and efficient frontier were derived. Then the dynamical properties of optimal investment strategies and efficient frontier affected by pemium, claim size and claim risk were analysized. Finally, the investment procedure is simulated with real data.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期91-97,共7页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(70871058 70671053 70871104) 清华大学经济管理学院中国保险与风险管理研究中心项目 江苏省高校自然科学基金项目(08KJB110004) 中国博士后科学基金项目(200902507) 教育部人文社会科学研究项目(09YJA790100)
关键词 CAR 保险投资 整体性风险 有效边界 CaR insurance investment integral risk efficient frontier
  • 相关文献

参考文献15

  • 1BROWNE S. Optimal investment policies for a firm With a random risk process: exponential utility and minimizing the probability of ruin[J]. Mathematics of Operations Research, 1995, 20(4): 937-958.
  • 2HIPP C, PLUM M. Optimal investment for insurers[J]. Insurance: Mathematics -z Economics, 2000, 27(10): 215-228.
  • 3HIPP C, PLUM M. Optimal investment for investor with state dependent income, and for insurers[J]. Finance and Stochastics, 2003, 7(2): 299-321.
  • 4YANG Hai-liang, ZHANG Li-hong. Optimal investment for insurer with jump-diffusion risk process[J].Insurance: Mathematics & Economics, 2005, 37(3): 615-634.
  • 5WANG Nan. Optimal investment for an insurer with exponential utility preference[J]. Insurance: Mathematics and Economics, 2007, 40(1): 77-84.
  • 6WANG Zeng-wu, XIA Jiang-ming, ZHANG Li-hong. Optimal investment for an insurer: the martingale approach[J]. Insurance: Mathematics and Economics, 2007, 40(2): 322-334.
  • 7荣喜民,卢美萍,李践.考虑承保风险的保险基金投资研究[J].系统工程学报,2004,19(2):198-201. 被引量:9
  • 8荣喜民,李楠.保险基金的最优投资研究[J].数量经济技术经济研究,2004,21(10):62-67. 被引量:21
  • 9ALEXANDER G, BAPTISTA A. Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis[J]. Journal of Economic Dynamics & Control, 2002, 26(7): 1 159-1 193.
  • 10姚京,李仲飞.基于VaR的金融资产配置模型[J].中国管理科学,2004,12(1):8-14. 被引量:50

二级参考文献30

  • 1[1]Markowitz H.Portfolio selection[J].The Journal of Finance,1952,7:77-91.
  • 2[2]Chen A,JenC,Zionts S.The optimal portfilio revision policy[J],Journal of Business,1971,44:51-61.
  • 3[3]Li D,Ng W L.Optimal dynamic portfolio selection:multiperiod mean-variance formulation[J].Mathematical Fiance,2000,10:387-406.
  • 4[4]Zhou X Y,Li D.Continuous-time mean-variance portfolio selection:a stochastic LQ framework[J].Applied Mathematics and Optimization ,2000,42 :19-33.
  • 5[5]Emmer S,Kluppelberg C,Korn R.Optimal portfolios with bounded capital-at-risk[J].Mathematical Finance,2001,11:365-384.
  • 6[6]Roy A D.Safety-first and the holding of assets[J].Econometrica,1952,20(3):431 -449.
  • 7[7]Pyle D H,Turnovsky S J,Safety-first and dexpected utility maximization in mean-standard deviation portfolio analysis [J].The Review of Economics and Statistics,1970,52(1):75-81.
  • 8王友 王元学 谢卫东.《中国保险实物全书》[M].中国物价出版社,1993..
  • 9Petterson, J. A., The dependence of Investment Policy on the Liabilities of a Lift Offfwe. Transactions of the 22nd International Congress of Actuaries in Sydney, 1984, 15, 201-215.
  • 10Moridaira, S. &. Urrtia, J. L., with R. C., The Equilibrium Insurance Price and Underwriting Return in a Capital Market Setting. Journal of Risk and Insurance, 1992, Vol.59, No.2, 291-300.

共引文献91

同被引文献45

  • 1LUNDBERG F I. Approximerad Framstallning av Sannolike- hetsfunktionen 11: Aterforsakering av Kollektivrisker[M]. Uppsala: Almqvist and Wiksell, 1903.
  • 2CRAMER H. On the Mathematical Theory of Risk[M]. Stockholm: Skandia Jubilee Volume, 1930.
  • 3HФJGAARD B, TAKSAR M. Optimal proportional reinsurance policies for diffusion models with transaction costs[J]. Insurance: Mathematics and Economics, 1998, 22(1): 41 - 51.
  • 4SCHMIDLI H. Optimal proportional reinsurance policies in a dynamic setting[J]. Scandinavian Actuarial Journal, 2001, 1(1): 55 - 68.
  • 5BAUERLE N. Benchmark and mean-variance problems for insurers[J]. Mathematical Methods of Operations Research, 2005, 62(1): 159- 165.
  • 6LIANG Z B. Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion[J]. Acta Mathematicae Applicatae Sinica, English Series, 2007, 23(3): 477 - 488.
  • 7EGAMI M, YOUNG V R. Optimal reinsurance strategy under fixed cost and delay[J]. Stochastic Processes and Their Applications, 2009, 119(3): 1015 - 1034.
  • 8BROWNE S. Optimal investment policies for a finn with a random risk process: exponential utility and minimizing the probability of ruin[J]. Mathematical Methods of Operations Research, 1995, 20(4): 937 - 958.
  • 9HIPP C, PLUM M. Optimal investment for insurers[J]. Insurance:Mathematics and Economics, 2000, 27(2): 215 -228.
  • 10YANG H L, ZHANG L H. Optimal investment for insurer with jumpdiffusion risk process[J]. Insurance: Mathematics and Economics, 2005, 37(3): 615 - 634.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部