期刊文献+

动态广义最小二乘法在面板协整中的应用研究 被引量:4

The Dynamic GLS Estimation of a Cointegrated Regression in Panel Data
下载PDF
导出
摘要 在进行非平稳面板数据的协整分析时,使用动态最小二乘法(DOLS)可以有效消除内生性问题,从而得到具有渐进正态分布的统计量。但在小样本条件下,由于可使用解释变量差分项的阶数有限,导致模型中均衡误差项的序列相关,使得DOLS统计量出现严重的检验水平畸变。为此,本文将单一时间序列的动态广义最小二乘法(DGLS)应用于非平稳的同质面板数据模型。在序贯极限分布的条件下,DGLS统计量仍具有正态的条件极限分布。而仿真实验表明,对于非平稳的同质面板数据模型,即使在均衡误差项存在高序列相关的条件下,DGLS统计量仍具有较好的小样本性质。 In the cointegration model of non-stationary panel data,the dynamic ordinary least square(DOLS) estimator can eliminate the endogeneity that caused by the long-run correlation between the equilibrium error and the first difference of the regressors. And under the sequential limit theory,the estimator of the DOLS is asymptotic normality. But in small samples,the leads and lags of the first differences of the independent variables are finite,which causes the serial correlation in the equilibrium errors,and this results in the great size distortion to the DOLS estimator. In this paper,we use panel dynamic generalized least squares ( DGLS) to estimate the cointegrating vectors in non-stationary homogeneous panel data,and the estimator of the DGLS still has a Gaussian sequential limit distribution. In a series Monte-Carlo experiments,we find that the estimator of the DGLS performs better in the sizes than that of the panel DOLS and FMOLS in small samples when there is serial correlation in the equilibrium errors.
出处 《统计研究》 CSSCI 北大核心 2010年第4期96-102,共7页 Statistical Research
基金 国家自然科学基金"考虑影响因素交互作用和能源回弹效应的能效政策分析模型"(70873058)资助项目
关键词 面板协整 序列相关 动态广义最小二乘法 检验水平 Panel cointegration Serial Correlation DGLS Empirical Size
  • 相关文献

参考文献14

  • 1Phillips, P. C. B., Durlauf, S. N. Multiple Time Series Regression with Integrated Processes [ J ]. Review of Economic Studies, 1986, 53, pp. 473 - 495.
  • 2Phillips, P. C. B. , Hansen, B. Statistical Inference in Instrumental Variables Regression with I( 1 ) Processes[ J]. Review of Economic Studies, 1990, Vol. 57, pp. 99 - 125.
  • 3Saikkonen, P. Asymptotically Efficiency Estimation of Cointegration Regressions[ J ]. Econometric Theory, 1991, 7, pp. 1 - 21.
  • 4Pedroni, P. , Fully Modified OLS for Heterogeneous Cointegrated Panels and the Case of Purchasing Power Parity [ R]. 1996, Working paper, Department of Economies, No. 96 - 20, Indiana University.
  • 5Kao, C. , Chiang, M.-H. On the estimation and inference of a cointegrated regression in panel data, in Baltagi B. H. ( ed. ) [ J], Advances in Econometrics : Nonstationary Panels, Panel Cointegration and Dynamic Panels, 2000, 15, pp. 179-222.
  • 6Westerlund, J. , Data Dependent Endogeneity Correction in Cointegrated Panels [ J ]. Oxford Bulletin of Economies and Statistics, 2005, 67, pp. 691 - 705.
  • 7Mark, N. C. , Sul. D. , Cointegration Vector Estimation by Panel DOLS and Long-run Money Demand [ J ]. Oxford Bulletin of Economics and Statistics, 2003, 65, pp. 655 - 680.
  • 8Stock, J. H., Watson, M. W. A Simple Estimation of Cointegrating Vectors in Higher Order Integrated Systems [ J ]. Eeonometrica, 1993, 61, pp. 783 - 820.
  • 9Nicholas, Sarantis. Chris, Steward., Saving Behaviour in OECD Countries: Evidence from Panel Cointeg:ration Tests [ J]. The Manchester School Supplement, 2001, 69, pp. 22 -41.
  • 10Alvin, Tan., Graham, Voss., Consumption and Wealth in Australia[ J]. The Economic Record, 2003, 79, pp. 39 - 56.

二级参考文献15

  • 1Breusch,T.S.,1979,Conflict Among Criteria for Testing Hypotheses:Extensions and Comments[J],Econometrica,47,203-207.
  • 2Chang,Y.,Park,J.Y.,and Song,K.,2006,Bootstrapping Cointegrating Regressions[J],Journal of Econometrics,133,703-739.
  • 3Davidson,R.,and MacKinnon,J.G.,2004,Econometric Theory and Methods[M],New York:Oxford University Press.
  • 4Dickey,D.A.,and Fuller,W.A.,1979,Distribution of the estimators for autoregressive time series with a unit root[J],Journal of the American Statistical Association,74,427-431.
  • 5Horowitz,J.,2001,The Bootstrap[M],in Heckman,J.J.,and Leamer,E.E.eds.,Handbook of Econometrics,Vol.5,Elsevier Science B.V.3159-3228.
  • 6Li,H.,and Maddala,J.S.,1997,Bootstrapping Cointegrating Regressions[J],Journal of Econometrics,80,297-348.
  • 7Mark,N.C.,Ogaki,M,and Sul,D.,2005,Dynamic Seemingly Unrelated Cointegrating Regressions[J],Review of Economic Studies,72,797-820.
  • 8Messemer,C.,and Parks,R.W.,2004,Bootstrap Methods for Inference in a SUR Model with Autocorrelated Disturbances[J],mimeo,Lewis & Clark College Portland.
  • 9Moon,R.H.,1999,A Note on Fully-Modified Estimation of Seemingly Unrelated Regressions Models with Integrated Regressors[J],Economics Letters,65,25-31.
  • 10Moon,R.H.,and Perron,B.,2000,The Seemingly Unrelated Dynamic Cointegration Regression Model and Testing for Purchasing Power Parity[J],Mimeo,University of Southern California.

共引文献2

同被引文献90

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部