期刊文献+

一种基于切丛的维数约简方法

A Dimensionality Reduction Method Based on the Tangent Bundle
下载PDF
导出
摘要 本文提出了一种基于切丛的维数约简方法。流形上的切丛不但能够刻画流形局部的结构特征,而且对流形整体的结构也能够进行描述。尤其对于聚类比较明显的数据集,在降维后能够更为精确地求得原数据在低维空间中的投影。通过对手写体数据的降维实验和BreastCancer实验表明,基于切丛的维数约简方法是一种有效的降维算法。 In this paper, we propose a dimension reduction method based on the tangent bundle. The tangent bundle of the manifold can not only describe the structure of local characteristics, but the overall shape of the structure of convection can be described. Especially for obvious clustering data sets , more accurate projection of the original data in the low dimen- sional space can be obtained after the dimensionality reduction process. It shows that the dimension reduction algorithm based on the tangent bundle(TB) is an effective method by dimensionality reduction experiments on handwritten data and breast cancer data.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第5期89-91,共3页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60775045)
关键词 维数约简 纤维丛 切空间 切丛 流形学习 机器学习 dimensionality reduction fiber bundle tangent space tangent bundle manifold learning machine learning
  • 相关文献

参考文献16

  • 1Jolliffe I T. Principal Component Analysis[M]. New York: Springer-Verlag, 1989.
  • 2Cox T F, Cox M A. Multidimensional Scaling[M]. London: Chapman & Hail,2001.
  • 3Common P. Independent Component Analysis: A New Con cept[J]. Signal Processing 1994,36(3):287-314.
  • 4Tenenbaum J B, de Silva V,John C, et al. A Global Geometric Framework for Nonlinear Dimensionaility Reduction[J]. Science, 2000,290(5500) :2319-2323.
  • 5Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000,290(5500): 2323-2326.
  • 6Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003,15(6) : 1373-1396.
  • 7Zhang Z Y, Zha H Y. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J]. SIAM Journal of Scientific Computing, 2005,26 (1) : 313-338.
  • 8Min WL, Lu L, He XF. Locality Pursuit Embedding[J]. Pattern Recongnition, 2004,37(4) : 781-788.
  • 9高小方.流形学习方法中的若干问题分析[J].计算机科学,2009,36(4):25-28. 被引量:15
  • 10侯臣平,吴翊,易东云.新的流形学习方法统一框架及改进的拉普拉斯特征映射方法[J].计算机研究与发展,2009,46(4):676-682. 被引量:15

二级参考文献118

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部