期刊文献+

基于BP网络与改进的PSO算法的入侵检测研究 被引量:12

Reserch of Intrusion Detection Based on the BP Networks and the Improved PSO Algorithm
下载PDF
导出
摘要 本文针对入侵检测系统中的误检率,提出了一种将BP网络和改进的PSO算法相结合的方法。该方法基于BP网络算法的局部精确搜索和改进的PSO算法的全局搜索的特性,并且用改进的PSO算法优化BP网络的权值、阈值,克服BP网络算法易陷入局部极值的弊端。在入侵检测系统中应用该网络结构,能准确地发现已知的攻击行为,并能进一步预测新的攻击行为,减少了入侵事件的漏报和误报。通过KDD99 CUP数据集进行仿真实验,与基于PSO-BP算法、传统的BP算法的入侵检测系统相比较,表明改进的PSO-BP算法的迭代次数较少、收敛速度快、检测率高,有一定的有效性。 This paper shows a way that combines the BP networks with the improved PSO algorithm aiming at false positive rate in intrusion detection systems(IDS). Based on the characteristics of the local precise search of the BP networks and the global search of the improved PSO algorithm, this method optimizes the weight and threshold of the BP networks, conquers the disadvantages of the BP networks that are easily trapped in the local extremum. And the network structure is applied into intrusion detection systems, which can discover the known detection exactly, forecast the new detection , and reduce the invasion of omissions and the false alarm rate. Comparing the simulation results of the KDD99 CUP dataset with the intrusion detection system based on the traditional BP networks and the improved PSO-BP network algorithm, the improved PSO algorithm shows less iteration times, quicker convergence rate, higher detection rate ,and sufficient availability.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第6期34-36,73,共4页 Computer Engineering & Science
关键词 改进的PSO BP网络 入侵检测 improved PSO algorithm BP networks intrusion detection
  • 相关文献

参考文献8

  • 1余炳辉,袁晓辉,王金文,权先璋.随机摄动粒子群优化算法[J].计算机工程,2006,32(12):189-190. 被引量:12
  • 2Yi Da,Ge Xiurun. An Improved PSO Based ANN with Simulated Annealing Technique [J]. Neurocomputing, 2005, 63 (1) :527-533.
  • 3高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-86. 被引量:242
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimization[C] //Proc of 1995 IEEE Int'l Conf on Neural Networks, 1995: 1942-1948.
  • 5Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proc of the 6th Int'l Symp on Micro Machine and Human Science, 1995 : 39-43.
  • 6Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proc of the IEEE Int' l Conf on Evolutionay Computation, 1998 : 69-73.
  • 7DARPA Intrusion Detection Evaluation, Lincoln Laboratory. Massachusetts Institute of Technology[DB/OL]. [2003- 06-16]. http..//www. 11. mit. edu/IST / ideval/index. html.
  • 8李丽芬.基于RBF神经网络的多级入侵检测研究[J].华北电力大学学报(自然科学版),2006,33(6):85-88. 被引量:2

二级参考文献29

共引文献253

同被引文献112

引证文献12

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部