期刊文献+

基于目标尺度的自适应高斯滤波 被引量:16

Adaptive Gaussian filter based on object scale
下载PDF
导出
摘要 将具有形态学意义的目标尺度与传统的线性高斯滤波相结合提出了一种自适应高斯滤波,它的主要思想是:利用求出的目标尺度来控制各像素点高斯滤波的方差和模板大小。针对原有的目标尺度求解算法不能适应可见光图像去噪的问题,一方面,引入中值滤波以去除对目标尺度求解影响较大的强噪声点,另一方面,又调整了求解目标尺度算法中的参数。仿真实验证明,该算法可以在去除噪声的同时保护图像的细节,而且不论从主观上还是客观上都优于传统的几类图像平滑算法,且不需要迭代求解,计算简单。 This paper proposes an adaptive Gaussian filter which combines the object scale that has morphological meaning and traditional linear Gaussian filter.Its main idea is:The variance and mask size of the Gaussian filter are controlled by the object scale.For resolving the problem that original algorithm of the object scale can not be applied to the denoising of visible light image very well,this paper first removes the strong noise points which interfere with the computation of the object scale greatly by using the median filter,then regulates the parameter of the algorithm of object scale.Experimental results show that the method can remove the noise while preserving the fine details.Both subjective and objective comparisons demonstrate that the method is superior than the several traditional image smoothing algorithms.In addition,the method does not require the iterative computation.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第12期14-16,20,共4页 Computer Engineering and Applications
基金 航空科学基金No.20080153002~~
关键词 目标尺度 自适应 高斯滤波 中值滤波 object scale adaptive Gaussian filter median filter
  • 相关文献

参考文献14

  • 1Deng C,Cahill L W.An adaptive Gaussian filter for noise reduction and edge detection[C]//Proc IEEE Nuclear Science Symposium and Medical Imaging Conference,San Francisco,CA,1993,3:1615-1619.
  • 2王文远.基于图像信噪比选择优化高斯滤波尺度[J].电子与信息学报,2009,31(10):2483-2487. 被引量:30
  • 3Witkin A.Scale-pace filtering[C]//International Joint Conference on Artificial Intelligence.Karlsruhe:William Kaufmann Publishers Inc,1983:1091-1021.
  • 4Hummel R A.Representations based on zero-crossings in scale-space[C]//Proc IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition.Miami Beach:Morgan Kaufmann Pub-lishers Inc,1986:204-209.
  • 5Perona P,Malik J.Scale space and edge detection using anisotropic diffusion[J].IEEE Trans on Pattern Analysis and Machine Intelli-gence,1990,12(7):629-639.
  • 6Catté F.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis,1992,29(1):182-193.
  • 7Lin Zhou-chen,Shi Qing-yun,An anisotropic diffusion PDE for noise reduction and thin edge preservation[C]//Proc Tenth Interna-tional Conference on Image Analysis and Processing.Venice:IEEE Computer Society,1999:102-107.
  • 8Gilboa G,Sochen N,Zeevi Y Y.Forward-and-backward diffusion pro-ceases for adaptive image enhancement and denoising[J].IEEE Trans on Image Processing,2002,11(7):689-703.
  • 9陈虎,周朝辉,王守尊.基于数学形态学的图像去噪方法研究[J].工程图学学报,2004,25(2):116-119. 被引量:54
  • 10张黄群,于盛林,白银刚.形态学图像去噪中结构元素选取原则[J].数据采集与处理,2008,23(B09):81-83. 被引量:30

二级参考文献19

  • 1张艳玲,刘桂雄,曹东,吴庭万.数学形态学的基本算法及在图像预处理中应用[J].科学技术与工程,2007,7(3):356-359. 被引量:58
  • 2宋锦萍,宋玲珍,杨晓艺,李登峰.一种基于小波变换的图像消噪算法[J].电子与信息学报,2007,29(1):43-46. 被引量:7
  • 3Catte F, Lions P L, and Coll T. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal of Numerical Analysis, 1992, 29(1): 182-193.
  • 4Lysaker M, Lundervold A, and Tai X C. Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2007, 12(12): 1579-1590.
  • 5Vogel R V and Oman M E. Iterative methods for total variation denoising[J]. SIAM Journal of Scientific Computing, 1996, 17(1): 227-238.
  • 6Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1986, 8(6): 679-698.
  • 7Mohsen E M and Mansour J. Linear motion blur parameter estimation in noisy images using fuzzy sets and power spectrum[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007(1): 1-8.
  • 8Rank K, Lendl M and Unbehanen R. Estimation of image noise variance[J]. IEE Proceedings-Visualization Image Signal Process, 1999, 146(2): 80-84.
  • 9Martin D R, Fowlkes C C, and Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2004, 26(1): 530-549.
  • 10[2]Maragos P, Schafer R W. Morphological filters-part Ⅰ:Their set-theoretic analysis and relations to linear shift-invariant filters[J]. IEEE Trans, 1987, ASSP-35(8): 1153~1169.

共引文献109

同被引文献165

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部