期刊文献+

一种新的改进粒子群优化方法 被引量:6

New improved particle swarm optimizer
下载PDF
导出
摘要 为解决粒子群优化算法易于陷入局部最优问题,提出了两种新方法并行修改粒子群优化算法惯性权重:对好于或等于整体适应度平均值的粒子,用动态非线性方程调整惯性权重,在保存相对有利环境的基础上逐步向全局最优处收敛;对比平均值差的粒子,用动态Logistic混沌映射公式调整惯性权重,在复杂多变的环境中逐步摆脱局部最优,动态寻找全局最优值。两种方法前后相辅相成、动态协调,使两个动态种群相互协作、协同进化。实验结果证实:该算法在不同情况下都超越了同类著名改进算法。 To solve the local-optima convergence problem of particle swarm optimization,two new methods are introduced to modify the Particle Swarm Optimization inertia weight in parallel:When particles'fitness values are better than or equal to the average,the introduced dynamic nonlinear equations are employed to modify the inertia weight,which can make particles retain favorable conditions and converge to the global optima continually;on the contrary,when fitness values are worse than the average,the dynamic Logistic chaotic map formula is introduced to modify the inertia weight,which can make particles break away from the local optima and search the global optima dynamically.Two methods coordinate dynamically,and make two dynamic sub-swarms cooperate to evolve.Experimental results demonstrate that the new introduced algorithm outperforms many other famous improved Particle Swarm Optimization algorithms on many well-known benchmark problems.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第12期38-41,45,共5页 Computer Engineering and Applications
基金 广东省自然科学基金No.8451009101001040~~
关键词 粒子群优化算法 惯性权重 动态非线性方程 动态Logistic混沌映射公式 Particle Swarm Optimization(PSO) inertia weight dynamic nonlinear equations dynamic Logistic chaotic map
  • 相关文献

参考文献15

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceed-ings of the IEEE Conference on Neural Networks,Perth,Australia,1995:1942-1948.
  • 2Eberhart R C,Shi Y.Particle swarm optimization:Developments,ap-plications and resources[C]//Proc Congress on Evolutionary Compu-tation,Seoul,Korea,2001:81-86.
  • 3Eberhart R C,Shi Y.Tracking and optimizing dynamic systems with particle swarms[C]//Proceedings of IEEE Congress on Evolutionary Computation,Seoul,Korea,2001:94-97.
  • 4dos Santos Coelho L,Lee Chu-Sheng.Solving economic load dis-patch problems in power systems using chaotic and Gaussian par-ticle swarm optimization approaches[J].Electrical Power and Energy Systems,2008,30:297-307.
  • 5Jiang Chuan-wen,Etorre B.A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimiza-tion[J].Mathematics and Computers in Simulation,2005,68:57-65.
  • 6刘怀亮.模拟退火算法及其改进[J].广州大学学报(自然科学版),2005,4(6):503-506. 被引量:15
  • 7刘怀亮,刘淼.一种混合遗传模拟退火算法及其应用[J].广州大学学报(自然科学版),2005,4(2):141-145. 被引量:24
  • 8Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Pro-ceedings of IEEE International Conference on Evolutionary Com-putation,Anchorage,USA,1998:69-73.
  • 9Shi Y,Eberhart R C.Empirical study of particle swarm optimiza-tion[C]//Proc IEEE Int Congr Evolutionary Computation,Washing-ton,DC,1999:1945-1950.
  • 10Clerc M.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[C]//Proc 1999 Congress on Evolutionary ComputationWashington,DC,Piscataway,NJ:IEEE Ser-vice Center,1999:1951-1957.

二级参考文献8

  • 1Garrison W Greenwood, Ajay Gupta, Scheduling task in multiprocessor system using evolutionary strategies[A]. The International Joint Conference on Neural Networks[C]. Japan : Nagoya, 1993. 216 - 224.
  • 2Fogel D B. System identification through simulated evolution: a machine learning approach to modeling[M]. America: Ginn Press,1991.
  • 3Grefenstelle J J, Gopal R, Rosmaita B, et al. Genetic algorithms for the traveling salesman[A]. International Conf of genetic algorithm and their applieatiorrs[C]. America: Pittsburgh, 1985. 359-371.
  • 4Hopfleld J J, Tank D W, Neural computation of decisions in optimization problems[J], Biological Cybem, 1985, 52:249 - 260.
  • 5Goldberg D E. Genetic algorithms in search,optimize and machine leaming[M]. New York: Addiso Wes-ley, 1993. 372- 385.
  • 6Metropolis N, Equations of state calculations by fast computing machines[J], J Chem Phys, 1953, (21): 1087-1091.
  • 7Kirkpatrick S, Gelatt C D, Vechi Jr M P. Optimization by simulated annealing[J]. Science, 1983, (220): 671-680.
  • 8Stuart G,Donald G. Stochastic relaxation gibbs distributions, and the buyesian restoration of images[J]. IEEE Trans On PAMI,1984,(6): 721-741.

共引文献35

同被引文献54

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部