期刊文献+

裂纹夹杂的几何参数及对复合体弹性模量的影响

Geometric Parameters of Cracked Inclusions and Their Effects on Elastic Modulus of Composites
下载PDF
导出
摘要 分析了细观力学中常用的夹杂参数(形状比和体积分数)在研究钱币形裂纹时趋于零的问题,并通过算例加以验证,指出该参数的不适用性.为了更有效地描述裂纹夹杂的几何特征,引入另外两个参数:裂纹面积分数和代表性体积元高宽比,用Mori-Tanaka方法,计算不同几何参数情况下非增强与纤维增强基体中含钱币形裂纹时复合体的弹性模量,讨论了参数的影响,证实了新参数的适用性. The conventional geometric parameters relevant to inclusions,i.e.,aspect ratio and volume fraction,are unsuitable to the micromechanical study on inclusions if taking the coin-like crack as inclusions of which both the aspect ration and volume fraction approach zero.The fact has been verified via numerical exemplification.So,two other parameters are introduced to describe the geometric characteristics of cracked inclusions,i.e.,the crack area fraction and the aspect ratio of representative volume element.Then,based on Mori-Tanaka method,the elastic modulus is calculated for a composite in which the unreinforced and fiber-reinforced matrices both contain the coin-like cracks as inclusions with different geometric parameters.The applicability of the two new parameters are verified with their effects discussed.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期568-571,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(10572037)
关键词 复合材料 弹性模量 裂纹夹杂 几何参数 MORI-TANAKA方法 composite elastic modulus cracked inclusion geometric parameter Mori-Tanaka method
  • 相关文献

参考文献7

  • 1冯西桥,余寿文.复合材料中增强相形状对有效模量的影响(Ⅰ)[J].清华大学学报(自然科学版),2001,41(11):8-10. 被引量:4
  • 2Robinson I M, Robinson J M. The effect of fiber aspect ratio on the stiffness of discontinuous fiber reinforced composites [J]. Composites, 1994,25(7) :499 - 503.
  • 3Lee K Y, Paul D R. A model for composites containing three- dimensional ellipsoidal inclusions E J 1- Polymer, 2005, 46 : 9064 - 9080.
  • 4Huang H, Talreja R. Effects of void geometry on dastic properties of unidirectional fiber reinforced composites [J ]. Composites Science and Technology, 2005,65 : 1964 - 1981.
  • 5Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problemsEJ]. Mathematical Physical & Engineering Sciences, 1957,241 ( 1226 ) : 376 - 396.
  • 6Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions E J ]. Acta Metall, 1973,21:571 - 574.
  • 7Zhao Y H, Weng J G. Plasticity of a two-phase composite with partially debonded inclusions[J ]. International Journal of Plasticity, 1996,12(6) :781 - 804.

二级参考文献2

  • 1Feng Xiqiao,Chin Sci Bull,2001年,46卷,1130页
  • 2杨庆生,复合材料细观结构力学与设计,2000年

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部