期刊文献+

连接增加对网络同步能力的影响

Effect of increasing links on the synchronizability of network
下载PDF
导出
摘要 文章运用矩阵理论,证明了无向网络对应耦合矩阵的第二大特征值随正耦合的增加(或加强)而不增这一性质。由耦合矩阵第二大特征值与网络同步能力之间的关系可知,同步区域无界的无向连通网络增加(或加强)正耦合后,其同步能力可能增强,也可能保持不变;增加(或加强)负耦合后,其同步能力可能降低,也可能保持不变。用几种具体网络验证了结果的正确性,数值计算结果表明,同步区域有界网络一般不具有这个性质。 Based on matrix theory, it is proved that the second largest eigenvalue of the coupling matrix which corresponds to undirected network maintains as the positive couplings increase or enhance. This property suggests that, if the positive (negative) couplings increase or enhance, synchronizability in a network with limitless synchronization region becomes stronger (weaker) or maintains. The validity of the result is illustrated by certain networks and the network with limited synchronization region usually does not possess the said property.
作者 马忠军 王毅
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期600-603,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(60964006) 广西教育厅科研基金资助项目(200807LX126 200911MS86)
关键词 复杂网络 耦合矩阵 特征值 同步能力 complex network coupling matrix cigenvalue synchronizability
  • 相关文献

参考文献14

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64 : 821 -824.
  • 2Pecora L M,Carroll T L. Dr!ving systems with chaotic signals[J]. Phys Rev A, 1991,44 : 2374- 2383.
  • 3Chavez M, Hwang D U, Amann A, et al. Synchronizing weighted complex networks[J]. Chaos, 2006,16 ( 1 ) : 15106.
  • 4Chavez M, Hwang D U, Amann A, et al. Synchronization is enhanced in weighted complex networks [ J]. Phys Rev Lett, 2005,94(3) : 218701.
  • 5Motter A E, Zhou C S, Kurths J. Enhancing complex-network synchronization[J ]. Europhys Lett, 2005, 69 : 334- 340.
  • 6Ma Zhongjun, Liu Zengrong, Zhang Gang. A new method to realize cluster synchronization in connected chaotic networks[J]. Chaos, 2006,16 (2) : 023103.
  • 7Ma Zhongjun, Zhang Gang, Wang Yi, et al. Cluster synchronization in star-like complex networks[J]. Phys A: Math Theor,2008,41 : 155101.
  • 8朱夜明,乔宗敏.Lorenz超混沌系统的全局同步控制[J].合肥工业大学学报(自然科学版),2007,30(8):1007-1009. 被引量:9
  • 9周琦.CHEN系统同步及其在保密通讯中的应用[J].合肥工业大学学报(自然科学版),2007,30(12):1604-1606. 被引量:1
  • 10刘勇.基于参数辨识的CHEN系统混沌同步[J].合肥工业大学学报(自然科学版),2008,31(3):441-444. 被引量:2

二级参考文献22

  • 1卢殿臣,宋娟,田立新.不同系统之间的混沌同步[J].江苏大学学报(自然科学版),2006,27(3):283-286. 被引量:8
  • 2Carrol T L, Pecora L M. Synchronization in chaotic systems[J]. Physics Review Letters, 1990,64(8): 821-824.
  • 3Li Shihua, Tian Yuping. Finite time synchronization of chaotic systems[J]. Chaos, Solitons and Fractals, 2003,15 (2) :303-310.
  • 4Ricardo F. Synchronization of chaotic systems with different order [J]. Physical Review E, 2002, 65:261-267.
  • 5Li Zhigang, Xu Daolin. A secure communication scheme using projective chaos synchronization [J]. Chaos, Solitons & Fractals, 2004,22(2):477-481.
  • 6Sun J T, Zhang Y P, Wu Q D. Impulsive control for the stabilization and Lorenz systems [J]. Physics Letters A, 2002,298(23) : 153-160.
  • 7Yang X S, Duan C K, Liao X X. A note on mathematical aspects of drive response type sysnchronization[J]. Chaos, Solitons and Fractais, 1999,10(9) : 1457- 1462.
  • 8Jin L, Zhou T S, Zhang S C. Chaos synchronization between linearly coupled chaotic systems [J]. Chaos, Solitons & Fractals, 2002,14(2) : 529-541.
  • 9Carrol T L, Pecora L M. Synchronization in chaotic systems [J]. Physics Review Letters, 1990,64(8):821-824.
  • 10Li Shihua, Tian Yuping. Finite time synchronization of chaotic systems[J]. Chaos, Solitons and Fractals, 2003,15 (2) :303-310.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部