期刊文献+

基于LabVIEW的音叉弦线振动混沌实验仪的研制 被引量:4

Study of chaos motion in the nonlinear vibration system based on the tuning fork by way of LabVIEW program
下载PDF
导出
摘要 文章以音叉弦线非线性振动为基础,通过音叉弦线长度、张力的调节,观察和研究振动由混沌向周期有序,或周期有序向混沌的运动变化过程;结合虚拟仪器LabVIEW软件平台,对原始信号采集数据序列,然后由LabVIEW进行信号处理,实时观察到混沌运动相图,并对理论计算相图和实际采集信号的相图进行比较,为混沌现象的研究提供一种新的实验方法。 A new way of studying chaos motion is given in the nonlinear vibration system based on the tuning fork. The motion changes from chaotic to periodic and its reversion can be seen by regulating the length and tension of a suspension wire which links the tuning fork. Furthermore, a new data collection and signal processing program is written by LabVIEW language to display the real-time and theoretic phase diagrams of the chaos motion on the computer. Thus, a new experimental method for studying chaos motion is presented.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期609-612,共4页 Journal of Hefei University of Technology:Natural Science
基金 合肥工业大学实验装置的改造与研制基金资助项目(Z200805)
关键词 混沌 音叉 虚拟仪器 数据采集 信号处理 chaos tuningfork virtual instrument data collection signal processing
  • 相关文献

参考文献8

二级参考文献26

  • 1陈菊芳,彭建华.演示离散混沌系统分岔图的实验方法[J].物理实验,2005,25(1):5-8. 被引量:6
  • 2刘建东.变型蔡氏电路中混沌控制的实验研究[J].物理实验,2005,25(3):7-10. 被引量:6
  • 3吴本科,蒋凉.音叉弦线受迫共振系统的计算机模拟研究[J].物理实验,1996,16(1):14-16. 被引量:7
  • 4Kittle C,Knight W D,Ruderman M A.力学[M].陈秉乾译.北京:科学出版社.1979.309.
  • 5Johnson J M, Bajaj A K. Amplitude modulated and chaotic dynamics in resonant motion of strings [J].Journal of Sound and Vibration, 1989, 128:87-107.
  • 6Agiza H N, Yassen M T. Synchronization of Rossler and Chen chaotic dynamical system using active control [J]. Phys. Lett. A, 2000,278:191-197.
  • 7Maccari A. Approximation solution of a class of nonlinear oscillators in resonance with periodic excitation. Nonlinear Dynamics, 1998, 15:329-343.
  • 8Maccari A. Nonlinear oscillations with multiple resonant or non-resonant forcing terms, Int J Non-linear Mechanics,1999, 34:27-34.
  • 9Maccari A. Modulated motion and infinite-period bifurcation for two non-linearly coupled and parametrically excited van der Pol oscillators, Int J Non-linear Mechanics,2001, 36:335-347.
  • 10Wiggins S. Global Bifurcation and Chaos. New York:Springer, 1988.

共引文献19

同被引文献17

  • 1吴本科,肖苏,高峰.利用驻波实验研究混沌现象[J].物理实验,2006,26(1):7-10. 被引量:9
  • 2吴本科,高峰,肖苏.音叉弦线振动系统中的非线性动力学分析[J].合肥工业大学学报(自然科学版),2006,29(3):365-368. 被引量:4
  • 3胡仁喜,王恒海,齐东明.LabVIEW8.2.1虚拟仪器实例指导教程[M].北京:机械工业出版社,2007.
  • 4同济大学数学系.高等数学:上册[M].第6版.北京:高等教育出版社,2006:79-80.
  • 5申永胜.机械原理[M].北京:清华大学出版社,1999..
  • 6濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2005.
  • 7Glass L,Gttevara MR,Shner A, et al. Bifurcation and cha- os in a periodically stimulated cardiac oscillator[ J]. Physi- ca 7D, 1983, 89 - 101.
  • 8Glass L,Gtaevara MR, Belan J,et al. Global bifurcation of periodically forced biological oscillator [ J ]. Phys Rev. 1984, A29:1348 - 1357.
  • 9Guevara MR, Glass L, Shner A. Phase locking period - dou- bling bifurcation, and irregular dynamics in periodic',dly stim- ulated em-dsiae cells [ J ]- Science, 1989,214 : 1350 - 1353.
  • 10Fitzhugh R. Impulses and pyhsiolgical states in theoretical models of nerve membrane [ J ]. Biophysical, 1961,1 : 445 - 446.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部