摘要
设R为非负整数集,用Mn(R)表示R上所有n×n矩阵构成的集合。令T是Mn(R)到其自身的线性变换,若T满足per(T(X))=per(X),X∈Mn(R),称T为Mn(R)上保持积和式的线性变换。刻画n≥2时,Mn(R)上保持积和式的加法满射,丰富半环上线性保持问题的成果。
Suppose R is the set of nonnegative integers, let Mn (R) be the set of all n × n matrices over R. A linear transformation T from Mn (R) to itself is said to be permanent preserver if per(T(X))=per (X) for every X∈Mn (R). The surjective additive operator on Mn (R) that preserves permanent is characterized when n≥2 in this paper. The conclusion enriches the results of linear preserver problems on semiring.
出处
《黑龙江工程学院学报》
CAS
2010年第1期70-72,共3页
Journal of Heilongjiang Institute of Technology
基金
国家自然科学基金资助项目(10871056)
关键词
积和式
线性变换
保持
permanent
linear transformation
preserving