期刊文献+

非负整数集上矩阵的积和式保持问题

Permanent preserver for matrices over the set of nonnegative integers
下载PDF
导出
摘要 设R为非负整数集,用Mn(R)表示R上所有n×n矩阵构成的集合。令T是Mn(R)到其自身的线性变换,若T满足per(T(X))=per(X),X∈Mn(R),称T为Mn(R)上保持积和式的线性变换。刻画n≥2时,Mn(R)上保持积和式的加法满射,丰富半环上线性保持问题的成果。 Suppose R is the set of nonnegative integers, let Mn (R) be the set of all n × n matrices over R. A linear transformation T from Mn (R) to itself is said to be permanent preserver if per(T(X))=per (X) for every X∈Mn (R). The surjective additive operator on Mn (R) that preserves permanent is characterized when n≥2 in this paper. The conclusion enriches the results of linear preserver problems on semiring.
作者 孟丽娜
出处 《黑龙江工程学院学报》 CAS 2010年第1期70-72,共3页 Journal of Heilongjiang Institute of Technology
基金 国家自然科学基金资助项目(10871056)
关键词 积和式 线性变换 保持 permanent linear transformation preserving
  • 相关文献

参考文献9

  • 1C. K. LI, N. K. TSING. Linear preserver problems. A brief introduction and some special techniques[J]. Linear Algebra Appl, 1992,162-164.217-235.
  • 2S. W. LIU, D. B. ZHAO. Introduction to Linear Preserver Problems[M]. Harbin.. Harbin Press, 1997:1-23.
  • 3C. K. LI, S. PIERCE. Linear preserver problems[J]. America Mathematical Mothly, 2001,108: 591-605.
  • 4孟丽娜,田国华.关于矩阵空间上保持极小秩问题的研究[J].黑龙江工程学院学报,2007,21(4):74-76. 被引量:2
  • 5VEIN R. , DALE P.. Determinants and their applications in mathematical physics[M]. New York: Springer- Verlag Press, 1999:99-112.
  • 6GOLAN J. S.. Semirings and Their Aplications, Updated and Expanded Version of the Theory of Semirings, with Applications to Mathematics and Theoretical Computer Science[M]. Dordrecht: Kluwer Academic Publishers, 1999:352-361.
  • 7POPLIN PHILLIP, HARTWIG ROBERT. Determinantal identities over commutative semirings[J]. Linear algebra and its applications, 2004,384 : 99-132.
  • 8BEASLEY LEROY, GUTERMAN ALEXANDER, LEE SANG-GU, et al. Frobenius and dieudonne theorems over semirings[J]. Linear and multilinear algebra, 2007,55(1) : 19-34.
  • 9谢源,谭宜家.关于正行列式的一个公开问题[J].福州大学学报(自然科学版),2009,37(3):305-307. 被引量:5

二级参考文献5

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部