期刊文献+

三维复Ginzburg-Landau方程的精确周期波解

Exact Periodic Wave Solutions for 3D Complex Ginzburg-Landau Equation
下载PDF
导出
摘要 在三维空间中考虑带立方非线性项的复值Ginzburg-Landau方程(CGL)ut=pu+(1+iγ)△u-(1+iμ)︱u︱2u的精确解,运用F展开法结合齐次平衡原理,得出了该方程的精确周期波解。 In this article, the 3D Complex Ginzburg-Landau equation ut=ρu+(1+iγ)△u-(1+iμ)|u|^2u u is considered by the method of Auxiliary Function together with the Homogeneous Balance method. Some exact periodic wave solutions are obtained.
出处 《广东广播电视大学学报》 2010年第2期89-91,共3页 Journal of Guangdong Radio & Television University
关键词 复Ginzburg—Landau方程 F展开法 周期波解 complex Ginzburg-Landau equation auxiliary function method periodic wave solution
  • 相关文献

参考文献6

  • 1Abdul-Majida, Wazwaz. Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg-Landau equations[J]. Applied Mathematics Letters, 2006, V19 (10) : 1007-1012.
  • 2FANG Fang, XIAO Yah. Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg-Landau equation with variable coefficients[J]. Optics Communications, 2006, 268(12): 305-310.
  • 3李栋龙,郭柏灵,刘旭红.三维复Ginzburg-Landau方程的整体解的存在惟一性[J].高校应用数学学报(A辑),2004,19(4):409-416. 被引量:7
  • 4DAI Zhengde, LI Shaolin, DAI Qingyun, HUANG Jian. Singular periodic soliton solutions and resonance for the Kadomtsev-Petviashvili equation[J]. Chaos. Solitions and Fractals, 2007, 34(4): 1148-1153.
  • 5AKHMEDIEV N, ANKIEWICZ A. Solitons: Nonlinear Pulses and Beams[M]. London:Chapman & Hall, 1997.
  • 6ZHOU Yubin, WANG Mingliang, MIAO Tiande. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations[J]. Physics Letters A 2004, 323(1/2): 77-88.

二级参考文献8

  • 1Ghidaglia J M,Heron B. Dimension of the attractor associated to the Ginzburg-Landau equation[J]. Phys. 1987,28:282-304.
  • 2Doering C,Gibbon J D,Holm D,et al. Low-dimensional behavior in the complex Ginzburg-Landau equation[J]. Nonlinearity, 1988,1: 279-309.
  • 3Promislow K. Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial equation[J]. Physica D, 1990,41: 232-252.
  • 4Bartuccelli M,Constantin P,Doering C,et al. On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation[J]. Physica D, 1990,44: 421-444.
  • 5Doering C R,Gibbon J D,Levermore C D. Weak and strong solutions of the complex GinzburgLandau equation[J]. Phys D, 1994,71:285-318.
  • 6Mielke A. The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors [J]. Nonlinearity, 1997,10: 199-222.
  • 7Henry D. Geometric Theory of Semilinear Parabolic Equation[M]. Berlin:Spring-Verlag, 1981.
  • 8Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equation [M].Berlin: Spring-Verlag, 1983.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部