期刊文献+

基于Lévy模型的重置期权的定价与实证分析 被引量:1

Pricing of Exotic Option under Lévy Model and Demonstration Analysis
下载PDF
导出
摘要 将传统的B-S模型下的期权定价公式推广到了带跳的Lévy模型,在随机积分中利用鞅方法给出了重置期权基于Lévy模型的精确定价公式.结合核密度估计和极大似然估计法给出了模型中未知参数的估计,并进行实证分析,作出了预测. This text extend risky asset price from the Black - Schotes model to the levy model with jumps. Some general and accurate formulae for the exotic options is then obtained by applying martingale methods. We give the corresponding estimates of unknown parameters which are involved in the risky asset price according to kernel density estimate and maximum likely estimate method. Also we gain forecast through demonstration analysis.
出处 《广西师范学院学报(自然科学版)》 2010年第1期33-40,共8页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 南京工程学院科研基金资助(KXJ08092)
关键词 LÉVY过程 等价鞅测度 随机积分 新型期权 核密度估计 levy process equivalent martingale measure stochastic integrals exotic option kernel density estimate
  • 相关文献

参考文献3

二级参考文献16

  • 1杨立洪,杨霞.二叉树模型在可转换债券定价中的应用[J].华南理工大学学报(自然科学版),2005,33(3):99-102. 被引量:16
  • 2LI Shu-jin,LI Sheng-hong.A generalization of exotic options pricing formulae[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(4):584-590. 被引量:3
  • 3谭利,高泳波.开放式股票基金业绩的实证研究与评价[J].西南师范大学学报(自然科学版),2006,31(4):44-48. 被引量:3
  • 4Blacd F, Scholes M. The Pricing of Options and Corporate Liabilities [J]. Journal of Political Economy, 1973, (3) : 637 - 654.
  • 5Lo A W, Mackinlary A C. Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specificatitest [J]. Review of Financial Studies, 1988, (1): 41 -66.
  • 6Knut K, Aase. Contingent Claims Valuationwhen the Security Price is Combination of an Ito Process and a Rando Point Process[J]. Stochastic processes and their Applications, 1988, 28(2) : 185 - 220.
  • 7Merton R C. Continuous-Time Finance [M]. Cambridge: Blackwell Publishers, 1990.
  • 8Martin Schweizer. Option Heading for Semi-martingales [J]. Stochastic Processes and Their Application, 1991, (3) 339 - 360.
  • 9Chan T. Pricing Contingent Claims on Stocks Driven by Levy Processes [J]. Annals of Appl Prob, 1999, 9(2) : 5 - 528.
  • 10Kallsen Jan. Optimal Portfolios for Exponential Levy Processes [J]. Math Meth Oper Res, 2000, 51(3) : 357 - 37.

共引文献8

同被引文献15

  • 1孙中奎,徐伟,杨晓丽.谐和激励与随机噪声作用下具有势的Duffing振子的混沌运动[J].动力学与控制学报,2005,3(3):13-22. 被引量:6
  • 2黄伯强,杨纪龙,马树建.Levy过程驱动下的欧式期权定价和套期保值[J].南京师范大学学报(工程技术版),2007,7(1):78-84. 被引量:6
  • 3D Applebaum. L6vy processes and Stochastic Calculus. Cambridge: Cambridge University Press, 2nd Edition, 2009.
  • 4D Applebaum, M Siakalli. Asymptotic stability of stochastic differential equations driven by Levy noise. J. Appl. Prob- ab, 2009, 46(4): 1116-1129.
  • 5P Brockwell, R Davis. Asymptotic stability of stochastic differential equations driven by Lrvy noise. J. Appl. Prob- ab, 2007 44(4) : 977-989.
  • 6A Gushchin, U Kuchler. On stationary solutions of delay differential equations driven by a L6vy process. StOchastic Processes and their Applications, 2000, 88 : 195 - 211.
  • 7Silke Sieger, Rudolf Friedrich. Modeling of nonlinear L6vy processes by data analysis. Physical Review E, 2008, 64, 041107:1 - 12.
  • 8A A Dubkov, B Spagnolo. Verhulst model with I.kvy white noise excitation. Eur. Phys. J. B, 2008, 65:361-368.
  • 9I) Applebaum. L6vy processes-from probability to finance and quantum groups. Notices of the AMS, 2004,51 ( 11 ) : 1336 - 1347.
  • 10M Grigouriu. Lyapunov exponents for nonlinear systems with Poisson White noise, Phys. Lett. A, 1996, 217:258-262.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部