期刊文献+

交叉口Agent间的博弈学习协调方法 被引量:5

Method of Intersection Agent Coordination Based on Game-learning
下载PDF
导出
摘要 将Multi-agent应用在城市交叉口交通协调控制中。通过引入交通信号控制Agent,分析Agent的协调过程;以交通信号控制Agent为角色,建立了相互关联的城市交叉口资源动态协调配置抽象模型;应用对策论作为协调实现途径,并且以分布式Q强化学习中Q值更新作为其效用函数。通过对两交叉口协调实例分析,证明了采用博弈学习协调方法的有效性。 Coordination based on Muli-agent constitutes a focus of open,distributed,complicated systems. In this paper, this technique was applied to urban intersection traffic coordination control. The coordination mechanism of traffic signal control Agent was analyzed. The abstract dynamic model of coordinated distribution of resources about interactive intersections was put forward used traffic signal control Agent as a role. The method of Game Theory was applied to realize the coordination ,and the renewed Q-value in the distributed reinforcement Q-learning was used to build the payoff values in the method of game theory. By comparing the method with and without coordination by an experiment of two intersections,the result indicates that the coordination method based on Game-learning is effective.
出处 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2010年第2期269-271,298,共4页 Journal of Chongqing Jiaotong University(Natural Science)
基金 国家自然科学基金项目(60664001)
关键词 协调 交叉口 对策论 学习 coordination intersection Game Theory learning
  • 相关文献

参考文献11

二级参考文献36

共引文献139

同被引文献47

  • 1石纯一,张伟.基于Agent的计算[M].北京:清华大学出版社.2007:11-12,119-120.
  • 2汪贤裕,肖玉明.博弈论及其应用[M].北京:科学出版社.2008:94-96.
  • 3汪贤裕,肖玉明.博弈论及其应用[M].科学出版社,2008.
  • 4Wiering M. Multi-Agent reinforcement learning for tragic light control [ C ]//Proceedings of the Seventeeth International Conference on Machine Learning and Applications. SanFrancisco: Morgan Kaufmann Publishers Incorporation ,2000 : 1151-1158.
  • 5Abulhal B, Pfingle P. Autonomous multiagent reinforcement learning: 5GC urban traffic control [ C] //Proceedings of the Annual Transportation Research Board Meeting. Washington DC : TRB,2003.
  • 6Abdulhal B, Pringle P, Karakoulas G. Reinforcement learning for true adaptive traffic signal control [J]. ASCE Journal of Transportation Engineering, 2003, 129 ( 3 ) : 278-284.
  • 7Bakker B, Steingr Over M, Sehouten R, et al. Cooperative multi-agent reinforcement learning of traffic lights [ C ]//J Proceedings of the Workshop on Cooperative Multi-Agent Learning European Conference on Machine Lear-ning. Berlin : Springer, 2005:24- 36.
  • 8Pendrith M D. Distributed reinforcement learning for a traffic engineering application [ M ]. New York: ACM Press ,2000:404-411.
  • 9Roozemond D A, Van Der Veer P. Usability of intelligent agent systems in urban trafficmanagement [ J ]. Application of Artifical Intelligence in Engineering, 1999 (7): 15-18.
  • 10Watkins C J C H,Dayan P.Technical Note Q-learning[J].Journal of Machine Learning,1992(8):279-292.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部