期刊文献+

交通流短时预测的相关性研究 被引量:7

Relation Analysis for Road Traffic Flow Short-term Forecasting
下载PDF
导出
摘要 交通流短时预测中,多个检测点的道路交通状态间的时空联系是客观存在的,但以往研究中通常根据经验假定,很少定量研究其相关性.本文引进了多元统计分析中的多维标度法对多断面时间序列的相关性进行定量分析,为合理进行多断面短时交通流预测研究提供基础.首先,根据道路网多个断面各自的时间序列利用相关系数方法得到两两之间相关性的相关系数矩阵,然后,利用多维标度法将道路网中多个断面交通流的相关程度映射到一张二维拟合构图中,以拟合构图中代表各个断面的点之间的欧几里得距离来体现断面之间的相关强度,从而判别断面之间相关性强弱,确定道路网多断面短时交通流预测时相关性分组.最后,根据相关性分析结果进行多断面交通流预测及效果比较,验证了方法的可行性和有效性. The relation of traffic state data and detective devices exists objectively, but previous attempts to perform short-time forecast are lack of quantitative analysis. Muhidimensional scaling from theory of multivariate statistical analysis is proposed to describe the relation for road traffic flow short-term forecast in this paper. It was used to associate the relevance of traffic flows data from road cross-sections with a two dimensional chart of derived stimulus configuration. According to the chart, the strong or weak of the relativity of each road cross-section can be obtained, which supplied research range, object, and base of data analysis to short-term traffic flow forecasting models and methods with consideration of the variety of time and space of traffic flow. The proposed method is verified to be reasonable and effective.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第2期117-121,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 973计划项目(2006CB705500) 国家自然科学基金项目(50578009) 北京交通大学科技基金资助项目(2007RC083)
关键词 交通工程 智能交通系统 短时预测 相关性 多维标度法 traffic engineering intelligent transportation system (ITS) short-term forecasting relation analysis multi- dimension
  • 相关文献

参考文献8

  • 1Joe Whittaker, Simon Garside, Karel Lindveld. Tracking and predicting a network traffic process [ J l. International Journal of Forecasting, 1997, 13(1) :51 - 61.
  • 2Billy M, Williams. Multivariate vehicular traffic flow prediction-evaluation of ARIMAX modeling [ J ]. Transportation Research Record 1776, 2001 : 194 - 200.
  • 3Anthony Stathopoulos, Matthew G, Karlaftis. Temporal and spatial variations of real-time traffic data in urban areas[ J ]. Transportation Research Record 1768, 2001 : 135 - 140.
  • 4Anthony Stathopoulos, Matthew G. Karlaftis. A multivariate state space approach for urban traffic flow modeling and prediction[J] . Transportation Research Part C, 2003, 11 (2) : 121 - 135.
  • 5Yiannis Kamarianakis, Poulicos Prastacos. Forecasting traffic flow conditions in an urban network-comparision of multivariate and univariate approaches [ J]. Transportation Research Record 1857,2003:74 - 84.
  • 6Yiannis Kamarianakis and Poulicos Prastacos. Space-time modeling of traffic flow [ J]. Computers & Geosciences, 2005, 31(2) :119- 133.
  • 7Eleni I, Vlahogianni, Matthew G, Karlaftis. Optimization of hybrid neural network predictor for spatial traffic flow data treatment: genetic phase-space reconstruction[C]//Application of Advanced Technologies in Transportation Engineering: Proceedings of the Eighth International Conference, Beijing, China, 2004. Reston, USA:ASCE, 2004:18-22.
  • 8姚智胜,邵春福.基于状态空间模型的道路交通状态多点时间序列预测[J].中国公路学报,2007,20(4):113-117. 被引量:24

二级参考文献19

  • 1史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报,2004,4(4):68-71. 被引量:49
  • 2高海军,宫晓燕.利用模糊时间序列进行短时交通流预测[J].信息与控制,2003,32(z1):644-648. 被引量:3
  • 3司徒惠源,罗康锦.动态交通分配:回顾及前瞻[J].交通运输系统工程与信息,2005,5(5):85-100. 被引量:4
  • 4AREMB V,KIRBY H R,VLIST MJ M,et al.Recent Advances and Application in the Field of Shortterm Traffic Forecasting[J].International Journal of Forecasting,1997,13(1):1-12.
  • 5CHROBOK R,KAUMANN O,WAHLE J,et al.Different Methods of Traffic Forecast Based on Real Data[J].European Journal of Operational Research,2004,155(3):558-568.
  • 6CLARK S.Traffic Prediction Using Multivariate Nonparametric Regression[J].Journal of Transportation Engineering,2003,129(2):161-168.
  • 7VANAJAKSHI L,RILETT L R.A Comparison of the Performance of Artificial Neural Networks and Support Vector Machines for the Prediction of Traffic Speed[C]//IEEE.Intelligent Vehicles Symposium.Parma:IEEE,2004:194-199.
  • 8BROCKWELL P B,DAVIS R A.时间序列的理论与方法[M].田铮,译.北京:高等教育出版社,2001:314-386.
  • 9谢衷洁.滤波及其应用[M].长沙:湖南教育出版社,1998:183-228.
  • 10DIGALAKIS V,ROHLICEK J R,OSTENDORF M.ML Estimation of a Stochastic Linear System with the EM Algorithm and Its Application to Speech Recognition[J].IEEE Transactions on Speech and Audio Processing,1993,1 (4):431-442.

共引文献23

同被引文献69

引证文献7

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部