期刊文献+

随机微分方程数值解的几乎必然稳定区域

Almost sure stability region of numerical scheme for stochastic differential equations
下载PDF
导出
摘要 从研究SDE数值解入手,证明了线性标量SDE的Euler-Maruyama方法数值解的几乎必然指数稳定的几个条件,并且找出了Euler-Maruyama方法数值解几乎必然指数稳定区域;通过与Saito和Mitsui研究的Euler-Maruyama方法数值解的均方稳定区域做比较,可以发现得到的几乎必然指数稳定区域更大,因此也是更有价值的. Starting from numerical stability,almost sure exponential stability conditions of the Euler-Maruyama method for linear scalar SDEs are proved, and the stability regions of numerical solution for linear scalar SDEs are identi-ed, By comparing with the mean-square stability regions reported by Saito and Mitsui,the almostsure stability regions in this paper is larger than the corresponding mean-square stability regions,andtherefore they are more valuable.
出处 《纺织高校基础科学学报》 CAS 2010年第1期54-58,共5页 Basic Sciences Journal of Textile Universities
关键词 随机微分方程 Euler—Maruyama方法 数值解 几乎必然指数稳定 stochastic differential equations( SDE) Euler-Maruyama method numerical solutions almostsure exponential stability
  • 相关文献

参考文献8

  • 1HIGHAM D J,KLOEDEN P E.Numerical methods for nonlinear stochastic differential equations with jumps[J].Numer Math,2005,101:101-119.
  • 2BRYDEN A,HIGHAM D J.On the boundedness of asymptotic stability regions for the stochastic theta method[J].BIT,2003,43:1-6.
  • 3HIGHAM D J.Mean-square and asymptotic stability of the stochastic theta method[J].SIAM J Numer Anal,2000,38:753-769.
  • 4KLOEDEN P E,PLATEN E.Numerical solutions of stochastic differential equations[M].New York:Springer-Verlag,1992:298-310.
  • 5田增锋,魏跃春,胡良剑.随机微分方程Euler法的均方稳定性和指数稳定性[J].自然杂志,2002,24(6):369-370. 被引量:5
  • 6田增锋,胡良剑.随机微分方程数值求解的两种插值法的比较[J].纺织高校基础科学学报,2003,16(1):14-18. 被引量:2
  • 7SAITO Y,MITSUI T.Stability analysis of numerical schemes for stochastic differential equations[J].SIAM J Numer Anal,1996,33:2 254-2 267.
  • 8MAO Xuerong.Stochastic differential equations and applications[M].Chichester:Horwood,1997:119-127.

二级参考文献7

  • 1[1]GLENN Marion, MAO Xuerong, ERIC Renshaw. Convergence of the Euler scheme for a class of stochastic differential equation[J]. International Mathematical Journal,2001,1(1):9-22.
  • 2[2]SLOMINSKI L. Eulers approximations of solutions of SDEs with reflecting boundary[J]. Stochastic Processes and Their Applications, 2001,94(2):317-337.
  • 3[3]SAITO Y, MITSUI T. Stability analysis of numerical schemes for stochastic differential equations[J]. SIAM J Numer Anal,1996,33:2254-2267.
  • 4[4]BURRAGE Kevin, TIAN Tianhai. The composite Euler method for stiff stochastic equations[J]. Journal of Computational and Applied Mathematics,2001,131(1~2): 407-426.
  • 5[5]HIGHAM D J,MAO X, STRUART A M.Exponential stability of the numerical solutions to SDEs, Workshop on computational SDE[Z].U K March: Warwick University, 2001.26-31.
  • 6[6]BURRAGE K,BURRAGE P, MITSUI T. Numerical solutions of stochastic differential equations-implementation and stability issues[J]. Journal of Computational and Applied Mathematics, 2000,125:171-182.
  • 7[7]KLOEDEN P E, PLATEN E. Numerical solution of stochastic differential equations[M],New York:Springer-Verlag,1992.298-310.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部