期刊文献+

316L不锈钢扩散连接接头界面疲劳裂纹扩展行为 被引量:8

Interfacial fatigue crack growth behavior of diffusion bonded joints of 316L stainless steel
下载PDF
导出
摘要 采用单边缺口试样对316L不锈钢扩散连接接头进行显微疲劳试验,实现微观尺度下界面裂纹扩展和微孔隙演化的原位观测.试验观察表明:动载荷下界面裂纹扩展时,裂纹尖端晶粒内产生局部的塑性变形,但几乎观测不到界面微孔隙的扩展,也未见微孔隙与微孔隙的相连;微孔隙对界面裂纹萌生和扩展的影响不大;扩散连接过程中所形成的谷脊状界面可以改变裂纹的扩展路径. Micro-fatigue test was performed on a single-edge notched specimen of diffusion bonded joints of 316L stainless steel in order to realize the in-situ observation of interfacial crack growth and microvoids evolution on microscale. Test results show that there is no shape change in microvoids as the crack propagates under dynamic loads,and plastic deformation occurs in grains adjacent to the crack tip. No coalescence among microvoids is observed during the repeated tests. Microvoids have little effect on the initiation and propagation of interfacial fatigue crack. The ridge-like interface formed in diffusion bonded joints due to surface roughness will change the crack path and can resist the growth of fatigue crack.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2010年第1期141-144,共4页 Materials Science and Technology
基金 国家自然科学基金(50225517 50475068) 教育部霍英东青年教师基金(101054)
关键词 扩散连接接头 界面疲劳裂纹 显微疲劳试验 裂纹扩展 微孔隙 diffusion bonded joints interfacial fatigue crack micro-fatigue test crack propagation microvoids
  • 相关文献

参考文献13

  • 1KANG Shung-wen D, Friedrich Craig R. Fabrication of foil-based micro heat exchanger[ C ]//The First Asia-Pacific and Second Japan - China International Conference on Progress of Cutting and Grinding. Shanghai: China, Sep 26 - 28, 1994 : 691 - 696.
  • 2TU S T. New Need of structural integrity technology for high temperature applications [ C ]//FM 2004 : Environmental Effect on Fracture and Damage. Hangzhou: China, Zhejiang University Press, 2004:43 -57.
  • 3TAKAHASHI K, UMEMOTO M, TANAKA N. Ultrahigh-density interconnection technology of three-dimensional packaging [ J ]. Microelectronics Reliability,2003, 43(8) : 1267 - 1279.
  • 4LEE M P, RUMBOLD S O. Industrial microchannel devices-Where are we today? [ C ]//First International Conference on Microchannels and Minichannels. Rochester: New York, Apr 24 -25, 2003 : 773 -780.
  • 5GHOSH M, SAMAR D, BANARJEE P S. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium-stainless steel couple [ J ]. Mater Sci and Eng A, 2005, 390:217 -226.
  • 6AKHTER J I, AHMAD M, IQBAL M. Formation of dendritic structure in the diffusion zone of the bonded Zircaloy -4 and stainless steel 316L in the presence of Ti interlayer[J]. J Alloys and Compounds, 2005, 399(1 - 2) : 96 - 100.
  • 7NISHI H, ARAKI T. Low cycle fatigue strength of diffusion bonded joints of alumina dispersion-strengthened copper to stainless steel[ J ]. J Nucl Mater, 2000, 283 - 287 : 1234 - 1237.
  • 8MAROIS G L, DELLIS C, GENTZBITTEL J M. HIPing of copper alloys to stainless steel [ J ]. J Nucl Mater, 1996, 233 - 237 : 927 - 931.
  • 9SATO S, KURODA T, KURASAWA T. Mechanical properties of HIP bonded joints of austenitic stainless steel and Cu - alloy for fusion experimental reactor blanket[J]. J Nucl Mater, 1996, 233 -237:940-944.
  • 10LI S X, XUAN F Z, TU S T. Microstructure evolution and interfacial failure mechanism in 316LSS diffusion bonded joints Mater. Sci. Eng. A2008 (in press).

二级参考文献16

  • 1Rice J R. Elastic fracture mechanics concepts for interfacial cracks[J]. Journal of Applied Mechanics,1988, 55(1): 98-103.
  • 2McNaney J M, Cannon R M, Ritchie R O. Fracture and fatigue-crack growth along aluminum-alumina interfaces[J]. Acta Mater, 1996, 44 (12): 4713 -4728.
  • 3Lipkin D M, Clarke D R, Evans A G. Effect of interfacial carbon on adhesion and toughness of gold-sapphireinterfaces[J]. Acta Mater, 1998, 46(13): 4835- 4850.
  • 4Evans A G, Hutchinson J W, Wei Y. Interface adhesion: effect of plasticity and segregation. [J]. Acta Mater, 1999, 47(15): 4093-4113.
  • 5Nishimoto K, Saida K, Matsuda Y, et al. Analysis of bonding interface in explosive bonded R SUS304ULC/Ta/Zr joint study on bonding of zirconium and stainless steel[J]. Journal of the Japan Welding Society,1998, 16(3): 340-349.
  • 6Nishida M, Murakami Z I. Behavior of bonded interface of explosive clad steel[J]. Transactions of the Japan Welding Society, 1992, 23(1): 9 - 16.
  • 7Yang Y, Zhang X M, Li Z H, et al. Adiabatic shear band on the titanium side in the Ti/mild steel explosive cladding interface[J]. Acta Materialia, 1996, 44(2):561565.
  • 8Motarjemi A K, Kocak M, Ventzke V. Mechanical and fracture characterization of a bimaterial steel plate[J]. International Journal of Pressure Vessels and Piping, 2002, 79(3): 181-191.
  • 9Wang J S. A micromechanical model for interface crack extension in metal/ceramic bimaterial systems[J]. Acta Metall Mater, 1998, 46(14): 4973-4984.
  • 10Turner M R, Dalgleish B J, He M Y, et al. Fracture resistance measurement method for bimaterial interfaces having large debond energy[J]. Acta Metall Mater, 1995, 43(9): 3459-3465.

共引文献1

同被引文献41

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部