期刊文献+

一种改进的基于系统调用的入侵检测算法 被引量:1

下载PDF
导出
摘要 针对入侵检测中所采集关于系统调用的原始数据集规模很大,当前的入侵检测系统难以取得令人满意的效果的问题,提出了一种基于非负矩阵分解算法的异常入侵检测模型。对前人提出的以训练数据的系统调用序列的频率属性为基本特征判断待检测数据是否正常的检测方法进行改进,在数据预处理阶段综合考虑系统调用数据的时序、状态转移和频率属性,从而对入侵行为做出更精确的判断。实验表明,选取合适维数r可以使的入侵检测的漏报率和误报率都趋于零。
出处 《数据通信》 2010年第2期48-51,共4页
  • 相关文献

参考文献8

  • 1Denning DE.An intrusion detection model.IEEE Trans on Software Engineering, 1987, 13(2):222-232.
  • 2Lee W, Stolfo S J, Chan P K, et al.Real-time data mining-based intrusion detection Proc of DARPA Information survivability Conference 2001.
  • 3Kemmerer R A, Vigna G. Intrusion detection: a brief history and overview Computer, 2002, 35(4):27-30.
  • 4Guan Xiaohong, Wang Wei, Zhang Xiangliang. Fast intrusion detection based on a non-negative matrix factorization model.Journal of Network and Computer Applications, 32, 2009: 31-44.
  • 5Lee DD,Seung HS.Learning the parts of objects with nonnegative matrix factorization. Nature 1999, 401:788-791.
  • 6Lee DD,Seung HS.Algorithms for nonnegative matrix factorization.Advances in neural information processing systems 13.Cambridge, MA: MIT Press, 2000.
  • 7谭小彬,王卫平,奚宏生,殷保群.计算机系统入侵检测的隐马尔可夫模型[J].计算机研究与发展,2003,40(2):245-250. 被引量:46
  • 8W.Richard Stevens.Advanced Programming in the UNIX Environment.Addison-Wesley, 1993.

二级参考文献9

  • 1D E Denning. An intrusion detection model. IEEE Trans on Software Engineering, 1987, 13(2): 222~232
  • 2N Ye. A Markov chain model of temporal behavior for anomal detection. The 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop, West Point, NY, 2000
  • 3S Jha, K Tan, R Maxion. Markov chains, classifiers, and intrusion detection A. Computer Security Foundations Workshop, the 14th IEEE, Cape Breton, Novia Scotia, Canada, 2001
  • 4E Eskin, L Wenke, S J Stolfo. Modeling system calls for intrusion detection with dynamic window sizes. DARPA Information Survivability Conf & Exposition Ⅱ, Anaheim, California, 2001
  • 5C Warrender, S Forrest, B Pearlmutter. Detecting intrusion using system calls: Alternative data models. In: Proc of the 1999 IEEE Symposium on Security and Privacy. Oakland, California: IEEE Computer Society, 1999. 133~145
  • 6Y Qiao, X W Xin, Y Bin et al. Anomaly intrusion detection method based on HMM. Electronics Letters, 2002, 38(13): 663~664
  • 7L R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, 77(2): 257~286
  • 8T F Lunt, A Tamaru, F Gilham, et al. IDES: A progress report. In: Proc of Annual Computer Security Applications Conf. Tuscon, Arizona: IEEE Computer Society Press, 1990. 273~285
  • 9S Forrest, S A Hofmeyr, A Somayaji et al. A sense of self for Unix processes. In: Proc of the 1996 IEEE Symp on Security and Privacy. Orkland California: IEEE Computer Society Press, 1996. 120~128

共引文献45

同被引文献13

  • 1LI Xianghe ZHANG Liancheng LI Shuo.Kernel Rootkits Implement and Detection[J].Wuhan University Journal of Natural Sciences,2006,11(6):1473-1476. 被引量:2
  • 2Riley R, Jiang X, Xu D. Guest-transparent prevention of kernel rootkits with vmm-based memory shadowing[C]//Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2008: 1-20.
  • 3Lange J R, Dinda P. Symcall: Symbiotic virtualization through vmm- to-guest upcaUs[C]//ACM SIGPLAN Notices. ACM, 2011, 46(7): 193- 204.
  • 4Sharif M I, Lee W, Cui W, et al. Secure in-vm monitoring using hardware virtualization[C]//Proceedings of the 16th ACM conference on Computer and communications security. ACM, 2009: 477-487.
  • 5Jiang J, Jia x, Feng D, et al. HyperCrop: a hypervisor-based countermeasure for return oriented programming[M]. Information and Communications Security. Springer Berlin Heidelberg, 2011.360-373.
  • 6Barham P, Dragovic B, Fraser K, et al. Xen and the art of virtualization[J]. ACM SIGOPS Operating Systems Review, 2003, 37(5): 164-177.
  • 7Garfinkel T. Traps and Pitfalls: Practical Problems in System Call Interposition Based Security Tools[C]//NDSS. 2003, 3: 163-176.
  • 8Xu M, Wu L, Qi S, et al. A similarity metric method of obfuscated malware using function-call graph[J]. Journal of Computer Virology and Hacking Techniques, 2013, 9(1): 35-47.
  • 9Shang S, Zheng N, Xu J, et al. Detecting malware variants via function-call graph similarity[C]//Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on. IEEE, 2010: 113- 120.
  • 10Graham S L, Kessler P B, Mckusick M K. Gprof: A call graph execution profiler[J]. ACM Sigplan Notices, 1982, 17(6): 120-126.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部