期刊文献+

蒸发蒸腾量时间序列的混沌特征分析 被引量:4

The Chaotic Features of Evapotranspiration Time Series
下载PDF
导出
摘要 利用成都1951-2000年的气象资料和地理参数,用Penman-Monteith公式计算蒸发蒸腾量(ET0)。根据混沌理论,采用Welch法和小数据量法识别ET0的混沌特征,根据G-P关联维和C-C方法得出主要的混沌特征指标,并利用RBF神经网络和Volterra级数进行一步预测。研究表明:ET0序列存在一定的混沌特征,最小嵌入维数m=6时对应的吸引子维数D=2.025,最大李雅诺夫指数大于0;利用RBF神经网络和Volterra级数自适应方法对ET0进行预测一步预时,Volterra级数自适应一步预测结果误差较小,预测精度较高。因此,在实际中可采用Volterra级数自适应模型进行ET0一步预测。 According to the meteorological data and geographical parameters between 1951 and 2000, the evapotranspiratJon (ETo) for Penman-Monteith model is calculated. This paper analyzes the chaos characteristic of ETo and displays the main chaos character- istic target according to the chaotic theory. And RBF neural network and Volterra series forecast for one step is used. This result indicates that ETo has chaos characteristic. When the minimum embedding dimension is 6, the corresponding attracts dimension is 2. 025, and the maximum Lyapunov index is bigger than zero. Using the RBF neural network and the Volterra series forecast ETo for one step, the Voherra series forecast ETo for one step forecasting result error is small, the precision of forecast is high. Therefore, ETo can be predicted with the Volterra series forecast in actual application.
出处 《中国农村水利水电》 北大核心 2010年第3期22-24,28,共4页 China Rural Water and Hydropower
基金 国家自然科学基金项目(50879072) 国家科技支撑计划(2006BAD11B04) 国家"863"计划课题(2006AA100209)
关键词 作物蒸发蒸腾量 混沌理论 李雅诺夫指数 the evapotranspiration of crops chaos theory Lyapunov Index
  • 相关文献

参考文献7

二级参考文献45

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2霍再林,史海滨,李为萍,佟长福,徐冰.参考作物蒸发蒸腾量的人工神经网络模型研究[J].沈阳农业大学学报,2004,35(5):436-438. 被引量:16
  • 3蔡甲冰,刘钰,雷廷武,许迪.根据天气预报估算参照腾发量[J].农业工程学报,2005,21(11):11-15. 被引量:39
  • 4徐俊增,彭世彰,张瑞美,李道西.基于气象预报的参考作物蒸发蒸腾量的神经网络预测模型[J].水利学报,2006,37(3):376-379. 被引量:57
  • 5SIVAKUMAR B, JAYAWARDENA A W, FERNANDO T M K G. River folw forecasting: use of phase-space reconstruction and artificial neutral networks approaches[J]. Journal of Hydrology, 2002, 265: 225-245.
  • 6JAYAWARDENA A W, LAI F. Analysis and prediction of chaos in rainfall and streamfolw time series[J]. Journal of Hydrology, 1994, 153: 23-52.
  • 7AMILCARE P, LUCA R. Nonliear analysis of river flow time sequences[J]. Water Resources Research, 1997, 33(6): 1353-1367.
  • 8FRANCESCO L V V. Chaotic forecasting of discharge time series: a case study[J]. Journal of the Amercian water resources association, 2001, 37(2):271-279.
  • 9TANKENS F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898: 366-381.
  • 10Mane R.On the dimension of the compact invarant sets of certain nonlinear maps[A].Rand D,Young L S.Dynamical systems and turbulence.Warwick,1980,Lecture Notes in Mathematics,Spring-Verlag,1981,898:230.

共引文献59

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部