期刊文献+

一种基于蚁群算法的边缘提取算法 被引量:10

An Edge Extraction Method Based on Gradient with ACS
下载PDF
导出
摘要 提出一种基于梯度定义和蚁群算法的边缘提取算法.根据梯度在边缘处的直观响应,提出自适应的边缘特征定义,并结合蚁群算法的特性,令蚂蚁遗留不同等级的信息素.根据搜索权值矩阵得到尽量平滑的边缘,最终的边缘通过自动阈值进行提取.实验表明:该算法的性能在同样的智能算法和经典的边缘检测算子中表现良好,并对噪音不敏感. A new edge extraction method based on ACS and gradient is proposed. Due to intormat,on feedback, the complicated problem can be resolved by the simple ants. The new food definition and movement meehanism to the ant is applied in this study. Multi-scale gradient is taken as the food objective of the ant. Besides, two directional functions included strong and weak one for prior directional searching are used, and the pheromone is graded. Furthermore, the thresholding is automatic for the final edge extraction. According to the compare with other methods in the experiment,the efficieney of the proposed method is proved, and the method is not sensitive to the noise.
作者 陈亮 郭雷
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第4期759-763,共5页 Acta Photonica Sinica
基金 国家自然科学基金(60675015)资助
关键词 多尺度梯度 蚁群算法 边缘提取 自适应 Multi-scale gradient ACS Edge extraction Self-adaptive
  • 相关文献

参考文献13

  • 1段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 2HEATH M,SARKAR S,SANOCKI T,et al.Comparison of edge detectors:a methodology and initial study[J].Computer Vision and Image Understanding,1998,69(1):38-54.
  • 3CANNY J.A computational approach to edge detection[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1986,8:679-698.
  • 4张麟兮,王保平,张艳宁,李南京,郭芳.基于多特征和FCM的图像边缘检测方法[J].光子学报,2005,34(12):1893-1896. 被引量:16
  • 5NEZAMABADI-POUR H,SARYAZDI S,RASHEDI E.Edge detection using ant algorithms[J].Soft Computing-A Fusion of Foundations,Methodologies and Applications,2006,10(7):623-628.
  • 6FERNANDES C,RAMOS V.ROSA A C.Self-Regulated artificial ant colonies on digital image habitats[J].International Journal of Lateral Computing,2005,2(1):1-8.
  • 7CHEN L,GUO L,YANG N,et al.Edge detection using inertia-based ant colony systems[C].AIPR-07,2007:320-325.
  • 8HAN Y,SHI P.An improved ant colony algorithm for fuzzy clustering in image segmentation[J].Neurocomputing,2007,70(4-6):665-671.
  • 9TAO W,JIN H,LIU L.Object segmentation using ant colony optimization algorithm and fuzzy entropy[J].Pattern Recognition Letters,2007,28(7):788-796.
  • 10GONZALEZ R C,WOODS R E.Digital Image Processing[M].2nd ed.USA:Prencice Hall,2002.

二级参考文献5

  • 1章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 2范九伦.模糊熵理论[M].西安:西北大学出版社,1999..
  • 3Pratt W K. Digital Image Processing[M]. New York: Wiley,1991.
  • 4Todd Law,Hidennori Itoh,Hirohisa Seki.Image filtering,edge detection,and edge tracing using fuzzy reasoning.IEEE Trans Pattern Analysis and Machine Intelligence,1996,18(5):481-491.
  • 5Bezdek J C.Pattern recognition with fuzzy objective function algorithms.New York:Plenum Press,1981.

共引文献386

同被引文献78

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部