摘要
本文简述了离散群作用下一维拓扑动力系统研究的最新成果,其内容包括可扩性、乒乓戏与几何熵;不变集与不变测度;拓扑k-传递性;敏感性与Devaney混沌;有界Euler类与共轭分类.同时一些开问题被提出.
In this survey it is given a brief account of recent research achievements in the study of 1-dimensional topological dynamical systems of discrete group actions.The content contains:expansiveness,ping pong game and geometric entropy;invariant sets and invariant measures;topological k-transitivity;sensitivity and Devaney's chaos;bounded Euler classes and classifications.Some open questions are reported.
出处
《数学进展》
CSCD
北大核心
2010年第2期129-143,共15页
Advances in Mathematics(China)
基金
Supported by the National Natural Science Foundation of China(No.10801103)
by the Natural Sciences Fund for Colleges and Universities in Jiangsu Province(No.08KJB110010)
关键词
拓扑动力系统
离散群
连续统
1-维流形
共轭分类
topological dynamical system
discrete group
continuum
1-manifold
conjugate classification