期刊文献+

边界输入输出结构下非线性梁光滑解的存在性(英文)

The Existence of Smooth Solutions for a Nonlinear Beam With Boundary Input and Output
原文传递
导出
摘要 本文研究一个描述梁振动的非线性模型,其非线性由物理条件(Hooke律)导致,主要研究该模型在边界输入输出结构下局部光滑解的存在性.首先应用发展方程理论证明相关线性系统存在光滑解,然后由一系列能量估计结合不动点定理证明所考察的非线性系统局部光滑解的存在性. In this article a dynamical system modeling the bending vibrations of a quasilinear beam is considered,where the nonlinearity comes from Hooke's law.We are concerned with the existence of local smooth solutions to this quasi-linear beam with boundary input and output.Applying the evolution system theory,we first show that a related linear system admits a unique smooth solution.Then some energy estimates for the linear system are established. Finally the existence of local smooth solutions to the quasi-linear system is shown through fixed point arguments.
作者 贾超华
出处 《数学进展》 CSCD 北大核心 2010年第2期187-202,共16页 Advances in Mathematics(China)
基金 supported by the NSFC(No.10626002)
关键词 Bernoulli-Euler梁 非线性梁 边界输入输出 发展方程 Bernoulli-Euler beam nonlinear beam boundary input and output evolution system
  • 相关文献

参考文献11

  • 1Greenberg, J.M. and Li T.Ts., The effect of boundary dmping for the quasilinear wave equation, J. Differential Eq., 1984, 52: 66-75.
  • 2Kato, T., Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, 1970, 17: 241-258.
  • 3Kato, T., Linear evolution equations of "hyperbolic" type Ⅱ, J. Math. Soc. Japan., 1973, 25: 648-666.
  • 4Klainerman, S. and Majda, A., Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math., 1980, 33: 241-263.
  • 5Lagnese, J.E., Boundary controllability of nonlinear beams to bounded states, Proceedings of the Royal Society of Edinburgh, Sect. A, 1991, 119(1-2): 63-72.
  • 6Lagnese, J.E. and Leugering, G., Uniform energy decay of a class of cantilevered nonlinear beams with nonlinear dissipation at the free end, Diferential Equations with Applications in Biology, Physics, and Engineering, Lecture Notes in Pure and Applied Mathematics, 1991, 133: 227-239.
  • 7Lagnese, J.E. and Leugering, G., Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, Journal of Diferential Equations, 1991, 91: 355-388.
  • 8Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Berline: Springer, 1983.
  • 9Russell, D.L., Mathematical Models for the Elastic Beam and Their Control-theoretic Implications, in Semigroups, Theory and Applications, Ⅱ, H. Brezis, M.G. Crandall and F. Kapell, eds., New York: Longman, 1986, 177-216.
  • 10Segal, L.A. and Handelman, G.H., Mathematics Applied to Continuum Mechanics, New York: Macmillan, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部