期刊文献+

智能诊断中动态模糊征兆向量方法 被引量:5

Method of Dynamic Fuzzy Symptom Vector in Intelligent Diagnosis
下载PDF
导出
摘要 针对由诊断知识的增加带来的对智能诊断系统诊断征兆变化的需求与多方位征兆智能诊断中征兆单位、数值差距过大的问题,提出实时更新元素的动态模糊征兆向量方法。定义了动态模糊征兆向量的概念,采用本体论规范征兆向量元素,建立了基于本体论的征兆向量传输方式。通过分析故障诊断征兆的变化规律,建立了基于模糊隶属函数的诊断征兆模糊化处理方案。实例表明,动态模糊征兆向量方法能有效地解决智能诊断中征兆的更新与征兆数值、单位的统一问题。 Aiming at the requirement of diagnostic symptom real-time updating brought from diagnostic knowledge accumulation and great gap in unit and value of diagnostic symptom in multi parameters intelligent diagnosis,the method of dynamic fuzzy symptom vector is proposed.The concept of dynamic fuzzy symptom vector is defined.Ontology is used to specify the vector elements,and the vector transmission method based on ontology is built.The changing law of symptom value is analyzed and fuzzy normalization method based on fuzzy membership functions is built.An instance proved method of dynamic fussy symptom vector is efficient to solve the problems of symptom updating and unify of symptom value and unit.
出处 《核动力工程》 EI CAS CSCD 北大核心 2010年第2期67-70,共4页 Nuclear Power Engineering
基金 重庆市自然科学基金资助项目(CSTC 2008BB3179)
关键词 智能诊断 诊断征兆 模糊隶属度函数 征兆向量 本体论 Intelligent diagnosis Diagnostic symptom Fuzzy membership function Symptom vector Ontology
  • 相关文献

参考文献14

  • 1Lei Yaguo,He Zhengjiang,Zi Yanyang.Application of an Intelligent Classification Method to Mechanical FaultDiagnosis[J].Expert Systems with Applications,2009,36 (6):9941-9948.
  • 2Chen Changzheng,Mo Changtao.A Method for IntelligentFault Diagnosis of Rotating Machinery[J].Digital SignalProcessing,2004,14(3):203-217.
  • 3Guo Qianjin,Yu Haibin,Xu Aidong.A hybrid PSO-GDBased Intelligent Method for Machine Diagnosis[J].Digital Signal Processing,2006,16(4):402-418.
  • 4Yang B S,Han T,An J L Art-kohonen Neural Networkfor Fault Diagnosis of Rotating Machinery[J].Mechanical Systems and Signal Processing,2004,18(3):645-657.
  • 5Miguel L J de,Blazquz F L.Fuzzy Logic-based Decision-making for Fault Diagnosis in a DC Motor[J].Engineering Applications of Artificial Intelligence,2005,18(4):423-450.
  • 6Lou Xinsheng.Loparo K A,Kenneth A.Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference[J].Mechanical Systems and Signal Processing.2004,18(4):1077-1095.
  • 7Liu Xiaofeng,Ma lin,Mathew J.Machinery FaultDiagnosis Based on Fuzzy Measure And Fuzzy Integral Data Fusion Techniques[J].Mechanical Systems and Signal Processing,2009,23(3):690-700.
  • 8Wang Jiangping,Hu Hongtao.Vibration-based Fault Diagnosis of Pump Using Fuzzy Technique[J].Measure-ment.2006,39(2):176-185.
  • 9Gruber T R.A Translation Approach to Portable Ontology Specifications[J].Knowledge Acquisition,1993,5(4):199-220.
  • 10Borst W N.Construction of Engineering Ontologiesfor Knowledge Sharing and Reuse[D].PhD thesis,Univer-sity of Twente,Enschede,1997.

二级参考文献11

  • 1曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 2Abernethy K.Use of an Expert System Data Analysis Manager for Space Shuttle Main Engine Test Evaluation.N89-15606
  • 3Kramer M A, Polowitch Jr B L.A rule-based approach to fault diagnosis using the signed directed graph.AIChE Journal.1987,33(7):1067~1078
  • 4MartinD 李喆.XML高级编程[M].北京:机械工业出版社,2001.01.
  • 5ChuckWhite LiamQuin LindaBurman著 周生炳 宋浩 肖伟等译.XML从入门到精通[M].电子工业出版社,2002..
  • 6BrittJ DuynsteeT.Visual Basic 6 XML专业技术[M].北京:人民邮电出版社,2000..
  • 7王妙云.[D].武汉:华中科技大学,2003.
  • 8肖人彬,苏牧,周济.一种实现异构知识集成的新方法[J].华中理工大学学报,1999,27(2):4-6. 被引量:8
  • 9马琳.CORBA/ⅡOP与XML结合的设想[J].计算机应用研究,2000,17(9):70-71. 被引量:9
  • 10李晨,张礼平,杨富平,翁志良.基于XML的松散耦合分布式计算[J].华东理工大学学报(自然科学版),2001,27(5):552-556. 被引量:6

共引文献6

同被引文献16

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部