期刊文献+

一个新的非协调四边形膜元 被引量:2

A NEW NONCONFORMING QUADRILATERAL MEMBRANE ELEMENT
下载PDF
导出
摘要 利用分析Specht元的技巧,构造了一个新的五节点非协调四边形单元.它对任意四边形网格通过Irons分片检查和广义分片检查,且单元上的形状函数不依赖于单元本身.同时证明该单元具有一个与Wilson元收敛性质相反的特殊性质,即在解适当光滑u∈H3(Ω)时,其逼近误差为O(h),相容误差为O(h2).这是其它二阶膜元所不具有的.算例表明,该单元有很好的数值效果.这对进一步研究某些超收敛性有重要意义. A new nonconforming arbitrary quadrilateral element is proposed by using the analysis techniques of Specht element. It is proved that this element pass through Irons′ patch test and the generalized patch test for arbitrary quadrilateral meshes. The choice of shape function is independent on the element′s geometrical parameters. At the same time, it is also proved that this element has a very special property: i.e. the consistency error is one order higher than that of the interpolation error under the assumption of u∈H 3(Ω) . This is precisely contrast to that of the Wilson element and seems never to be found for other membrane finite elements. Numerical results show that this element has good convergence behavior. It is of great importance for superconvergence studying.
出处 《郑州大学学报(自然科学版)》 CAS 1998年第1期1-6,共6页 Journal of Zhengzhou University (Natural Science)
基金 国家自然科学基金 河南省自然科学基金
关键词 收敛 工程计算 非协调元 四边形网格 WILSON元 nonconforming quadrilateral special property shape function numerical result
  • 相关文献

参考文献13

  • 1Shi Zhongci. A Convergence Condition for the Quadrilateral Wilson Element. Numer Math, 1984, 44:349-361.
  • 2Wachspress E L. Incompatible Quadrilateral Basis Functions. lnt J Numer Meth Eng, 1978,12:589-595.
  • 3蔡伟.二个非协调膜元的收敛性问题[J].计算数学,1986,8(1):63-74.
  • 4江金生,程晓良.二阶问题的一个类Wilson非协调元[J].计算数学,1992,14(3):274-278. 被引量:41
  • 5石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167. 被引量:56
  • 6石东洋,陈绍春.一类六参数非协调任意凸四边形单元[J].高校应用数学学报(A辑),1996(2):231-238. 被引量:10
  • 7李镛 吴长春.一个四边形非协调新模式及其收敛性研究[J].应用数学与力学,1986,7(1):647-654.
  • 8石钟慈.关于Wilson元的最佳收敛阶.计算数学,1986,8(2):159-163.
  • 9Ciarlet P G. The Finite Element for Elliptic problems. North \ I HolLand, Amsterdam, 1978.
  • 10Stummel F. The Generalized Patch Test. SIAM J Numerical Anal, 1979,16(3) :449-471.

二级参考文献8

共引文献81

同被引文献12

  • 1石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167. 被引量:56
  • 2石东洋,陈绍春.一类六参数非协调任意凸四边形单元[J].高校应用数学学报(A辑),1996(2):231-238. 被引量:10
  • 3陈万吉 唐立民.等参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 4龙驭球 董民丰.广义拟协调元[J].应用数学与力学,1988,9(10):871-877.
  • 5李镛 吴长春.一个四边形非协调新模式及其收敛性研究[J].应用数学与力学,1986,7(1):647-654.
  • 6Lesaint P, Zlamal M. Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes[ J ]. Numer Math, 1980,36(1) :33 ~ 35.
  • 7Shi Zhongci. A convergence condition for quadrilateral Wilson element[J] .Numer Math,1984,44(3):349 ~ 361.
  • 8Falk R S. A finite element method for the stationary Stokes equations using trial functions which do not have to satisfy div v = 0[ J ].Math of Comp, 1976,30(136) :698 ~ 702.
  • 9Ciarlet P G.The Finite Element Method for Elliptic Problem[M] .Amsterdam,North-Holland,1978.
  • 10Temam R. Navier-Stokes Equations[ M ]. 3rd ed. North-Holland, Amsterdam, 1984.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部