期刊文献+

核电厂冷却塔水汽抬升与液滴沉降规律数值模拟技术分析 被引量:2

Discussion on Numerical Simulation Techniques for Patterns of Water Vapor Rise and Droplet Deposition at NPP Cooling Tower
下载PDF
导出
摘要 结合冷却塔的工作原理,简要分析比较了ORFAD、KUMULUS、ISCST3、ANL/UI、CFD等预测冷却塔水汽抬升与液滴沉降规律的数值模型的优缺点。结果表明:使用三维流体雷诺运动方程的CFD模型是目前预测冷却塔水汽抬升与液滴沉降规律的较好模型。其它模型均没有考虑水汽轨迹流线偏差与速度的变化对水汽上升的影响,同时不能用于预测当冷却塔下风向有大型建筑物且粒径较大的粒子的抬升与沉降规律。 Based on the working principle of cooling tower, analysis and comparison are made of beth advantages and disadvantages of the numerical simulation models, such as ORFAD, KUMULUS, ISCST3, ANL/UI, CFD etc., which predict the rise and droplet deposition pattern of cooling tower water vapor. The results showed that, CFD model is currently a better model that is used of three-dimensional Renault fluid flow equations predicting the rise and droplet deposition pattern of cooling tower water vapor. The impact of the line trajectory deviation and the speed change inn plume rising is not considered in any other models, and they can not be used for prediction of particle rise and droplet deposition when a larger particle or large buildings in the direction of cooling tower.
出处 《辐射防护》 CAS CSCD 北大核心 2010年第2期102-107,共6页 Radiation Protection
基金 国家"十一五"核能开发资金资助项目
关键词 冷却塔 水汽抬升 液滴沉降 数值模拟 Cooling Tower Water Vapor Rise Droplet Deposition Numerical Simulation
  • 相关文献

参考文献27

  • 1Hanna SR. Predicied and observe cooling tower plume rise and visible plume length at the John E Amos Power Plant [ J ]. Atmospheric Environment, 1976, 10: 1 043-1 052.
  • 2Andreopoulos J. Wind tunnel experiments on cooling tower plumes: part 1 -in uniform erossflow [ J ]. ASME J Heat Transfer, 1989a, 111:941-948.
  • 3Andreopoules J. Wind tunnel experiments on cooling tower plumes: part 2 -in a nonuniform crosstlow of boundary layer type [ J ]. ASME J Heat Transfer, 1989b, 111 : 949-955.
  • 4Kennedy JF, Fordyce H. Plume recirculation and interference in mechanical-draft cooling tower [ M ]. Cooling Tower Environment, 1974:58-87.
  • 5Jain SC, Kennedy JF. Modeling near-field behavior of mechanical draft cooling tower plumes, environmental effects of cooling tower plumes[R]. WRRC Special Report, 1978,9:13-30.
  • 6Takenobu Michioka, Ayumu Sato. Wind tunnel experiment for predicting a visible plume region from a wet cooling tower[J]. Journal of Wind Engineering and Industrial Aerodynamics,2JX?7, 95:741-754.
  • 7Hanna SR. A simple drift deposition model applied to the chalk point dye tracer experiment[G]//Symposium on Environmental Effects of Cooling Tower Plumes. University of Maryland, 1978:105-118.
  • 8Weil JC. The rise of moist, buoyant plumes[J]. J Applied Meteorology, 1974,13:435-443.
  • 9Wigley TML. A numerical analysis of the effect of condensation on plume rise[J]. J Applied Meteorology, 1975,14:1 105-1 109.
  • 10Hanna SR, Briggs GA RP, Hosker Jr. Cooling tower plumes and drift Deposition, handbook on atmospheric diffusion.US Department of Energy, 1982:74-78.

二级参考文献42

共引文献135

同被引文献22

  • 1国家核安全局.HADl0I/02核电厂厂址选择的大气弥散问题[R]//核安全导则汇编.北京:中国法制出版社.1998.
  • 2Bornoff R B, Mokhtarzadeh-Dehghan M R. A numerical study of interacting buoyant cooling-tower plumes[J]. Atmospheric Environment, 2001, 35(3): 589-598.
  • 3Meroney R N. CFD prediction of cooling tower drift[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(6): 463-490.
  • 4Hanna S R. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant[J]. Atmospheric Environment (1967), 1976, 10(12): 1043-1052.
  • 5LaVerne M E. Oak Ridge fog and drift code (ORFAD) userJs manual[R]. Oak Ridge, TN: Oak Ridge National Labortatory, 1977.
  • 6Moore R D. The KUMULUS model for Plume and Drift Deposition Calculations for Indian Point Unit No. 2[R]. Knoxville, TN: Environmental Systems Corporation, 1977:189-210.
  • 7Fuchs H, Hofman W. A refined method to calculate the shadowing by cooling tower plumes[C]//Proceeding of IAHR Cooling Tower Workshop, San Francisco, USA, September 22-25, 1980.
  • 8Carhart R A, Policastro A J. A second-generation model for cooling tower plume rise and dispersion[J]. Atmospheric Environment, 1991, 25 (8): 1559-1576.
  • 9US Nuclear Regulatory Commission. Standard review plans for environment reviews for nuclear power plant: Environmental standard review plans (NUREG- 1555) [S].
  • 10Washington DC Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission, 2000. Wigley T M L, Slawson P R. The effect of atmospheric conditions on the length of visible cooling tower plumes[J]. Atmospheric Environment, 1975, 9(4): 437-445.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部