摘要
We developed a new structural lightweight concrete by totally or partially replacing coarse and fine aggregates in high performance concrete by expanded polystyrene (EPS) beads. In this work,the sizes of EPS bead were 1.0,2.5 and 6.3 mm. Lightweight EPS concretes with a wide range of concrete densities and compressive strengths were successfully developed. Compressive strength,splitting tensile strength,shrinkage,and water absorption were examined. Additionally,fine silica fume (SF) and polypropylene (PP) fibers were added to improve the mechanical and shrinkage properties of EPS concretes. The results show that fine SF greatly increases the bond strength between the EPS beads and cement paste,thus increasing the compressive strength of EPS concrete. With inclusion of PP fibers,drying shrinkage properties are significantly improved.
We developed a new structural lightweight concrete by totally or partially replacing coarse and fine aggregates in high performance concrete by expanded polystyrene (EPS) beads. In this work,the sizes of EPS bead were 1.0,2.5 and 6.3 mm. Lightweight EPS concretes with a wide range of concrete densities and compressive strengths were successfully developed. Compressive strength,splitting tensile strength,shrinkage,and water absorption were examined. Additionally,fine silica fume (SF) and polypropylene (PP) fibers were added to improve the mechanical and shrinkage properties of EPS concretes. The results show that fine SF greatly increases the bond strength between the EPS beads and cement paste,thus increasing the compressive strength of EPS concrete. With inclusion of PP fibers,drying shrinkage properties are significantly improved.
基金
the National Natural Science Foundation of China(No.50708059)