期刊文献+

RBF网络的鲁棒最小二乘学习算法 被引量:6

RBF network learning algorithm using robust least-squares
原文传递
导出
摘要 首先,针对径向基函数(RBF)神经网络参数学习中最小二乘法(LS)难以获得较高鲁棒性的问题,假定训练数据扰动上界可知,并基于鲁棒最小二乘原理,提出一种RBF网的最优鲁棒参数学习算法;然后分析指出,扰动上界可依据训练数据集自适应学习估计;最后通过实验分析结果表明了所提算法具有较高的参数鲁棒学习能力.与LS相似,新算法无额外参数,易于实际应用. How to obtain the high robustness in radius basis function(RBF) learning is a trouble.Therefore,with the supposition that the perturbation of training dataset is bounded,a RBF network learning algorithm is proposed in terms of the robust least-square principle.Moreover,a strategy of estimating perturbation bound is proposed.Experimental analysis shows that the proposed method has effective robust learning performance.Similar to standard least square algorithm,no additional parameters are needed for the proposed algorithm,which is benefit to more practical applications.
出处 《控制与决策》 EI CSCD 北大核心 2010年第4期502-506,514,共6页 Control and Decision
基金 国家自然科学基金项目(60704047) 2008年度江苏省科技支撑计划项目(BE2008009) 江南大学自主科研计划项目(JUSRP30909)
关键词 径向基函数神经网络学习 鲁棒最小二乘 函数逼近 RBF neural network learning Robust least-square Function approximation
  • 相关文献

参考文献12

二级参考文献28

  • 1李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 2丁宏锴,萧蕴诗,李斌宇,岳继光.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,2005,17(8):1826-1829. 被引量:17
  • 3Liu M Q,中南工业大学学报,1998年,5卷,2期,141页
  • 4Chen S,Int J Control,1990年,52卷,6期,1327页
  • 5KENNEDY J,EBERHART RC.Particle Swarm Optimazation[A].Proceedings of IEEE International Conference on Neural Networks[C].Piscataway,NJ:IEEE Service Center,1995.1942-1948.
  • 6SHI Y,EBERHART RC.A Modified Particle Swarm Optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ:IEEE Press,1998.69-73.
  • 7CLERC M.The Swarm and Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[A].Proceedings of CEC 1999[C].Piscataway,NJ:IEEE Press,1999.1951-1957.
  • 8SUN J,FENG B,XU WB.Particle Swarm Optimization with Particles Having Quantum Behavior[A].Proceedings of 2004 Congress on Evolutionary Computation[C].2004.325-331.
  • 9SUN J,XU WB.A Global Search Strategy of Quantum-behaved Particle Swarm Optimization[A].Proceedings of IEEE conference on Cybernetics and Intelligent Systems[C].2004.111 -116.
  • 10XU L,Krzyzak A,Oja E.Rival Penalized Competitive Learning for Clustering Analysis,RBF Net,and Curve Detection[J].IEEE Transactions on Neural Networks,1993,4(4):636 -649.

共引文献105

同被引文献62

  • 1赵志宇,邵诚,于云满.基于小波变换的滚动轴承故障诊断专家系统的研究[J].机械设计与研究,2005,21(1):50-52. 被引量:18
  • 2朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J].中国电机工程学报,2005,25(10):159-165. 被引量:82
  • 3王升辉,裘正定.结合多重分形的网络流量非线性预测[J].通信学报,2007,28(2):45-50. 被引量:40
  • 4Ganyun L V, Cheng Haozhong, Zhai Haibao, et al. Fault diag- nosis of power transformer based on multiiayer SVM classifier [J]. Electric Power System Research, 2005, 74(1) : 1-7.
  • 5Piggio T, Girosi F. A theory of networks for approximation.and learning[R]. Cambridge, UK: Artificial Intelligence La- boratory, Massachusetts Institute of Technology, Cambridge Massachusetts, 1989.
  • 6Peng Jianxun, Li Kang, Irwin George W. A novel continuous forward algorithm for RBF neural modeling[J]. IEEE Transac- tions on Automatic Control, 2007, 52(1): 117 122.
  • 7Chiang Junghsien, Ho Shinghua. A combination of rough- based feature selection and RBF neural network for elassifica tion using gene expression data[J]. IEEE Transactions on Nan-Bioscienee, 2008, 7(1): 91-99.
  • 8Ke Meng, Zhao Yangdong, Dian Huiwang, et al. A Self-adap- tive RBF neural network elassifier for transformer fault analy- sis[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1350-1360.
  • 9Asuncion A, Newman D J. UCI machine learning repository [OB/OL]. http://www, its. uci. edu/-mlearn/MLReposito- ry. html.
  • 10Moody J, Darken C. Learning with localized receptive fields [C] // 1988 Proceedings of Connectionist Models Summer School. California, USA: [s. n. ], 1988: 133-143.

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部