期刊文献+

基于图像分块的二维投影特征提取能力研究

2-Dimension Projection Feature Extracting Ability Research Based-On Image Module
下载PDF
导出
摘要 人脸识别研究的主要目的是提高识别率,关键技术在于提取有效的人脸特征。提出了分块多投影和分块双向多投影二维特征提取方法。分块多投影特征提取方法,针对现有分块单投影特征提取方法中每一子图均采用相同投影矩阵,而对人脸局部信息不加以区别,利用二维主成分分析方法,构造了分块多投影矩阵,使不同的子图投影到不同的子空间,与传统二维主成分方法和分块单投影方法相比,有效地利用人脸局部信息,降低了特征维数,提高了识别率,在ORL人脸库上实验表明了其有效性。 The target of face recognition is to enhance recognition correctness. The key technology is how to ex- tract effective features of face characteristics. This paper proposes the 2 - dimension feature extraction methods of modular multi - projection and modular two direction multi - projection. Targeting the problem that all the sub - ima- ges choose the same projection matrix and don't discriminate facial local information in modular single - projection feature extraction method, module multi - projection feature extraction method constructs modular multi - project ma- trix using the traditional 2 - dimaension principle component, making different sub - images to project different sub- spaces. Compared with the traditional 2 - dimaension principle component and modular single - projection feature ex- traction method, recognition rate of this method is greatly improved and the dimension of feature is reduced effectively by making use of facial local information. Experiments on ORL face database proved its effectiveness .
作者 郭志强 杨杰
出处 《计算机仿真》 CSCD 北大核心 2010年第4期228-231,278,共5页 Computer Simulation
基金 国家自然科学基金(50775167) 湖北省科技攻关项目(2007A101c52)
关键词 图像分块 二维投影 主成分 Image module 2 - Dimension project Principle component
  • 相关文献

参考文献9

  • 1M Turk and A Pentland. Face processing: a Models for recognition [ C ]. Proc. Intelligent Robots and Computer vision Ⅷ, SPIE, 1989 - 1,192:22 - 32.
  • 2Peter N Belhumeur, et al. Eigenfaces vs. Fisherface: Recognition using class specific linear projection[ J]. IEEE Trans. Pattern Anal. Machine Intell, 1997,19(7) :711 -720.
  • 3K Liu, Y Q Cheng, J Y Yang. Algeraic feature extraction for image recognition based on an optimal discriminant criterion[ J]. pattern recognition, 1993,26 ( 6 ) :903 - 911.
  • 4Jian Yang, David Zhang. Two - Dimensional PCA : A New Approach to Appearance - Based Face Representation and Recognition [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence. 2004,24( 1 ) :131 - 135.
  • 5Ming Li, Baozong Yuan. 2DLDA:A Statistical Linear discriminant analysis for image matrix [ J ]. Pattern Recognition letters, 26, 2005. 527 - 532.
  • 6Wang LiWei, Wang Xiao, Zhang Xuerong, Feng Jufu. The equivalence of two - dimension PCA to line - besde PCA [ J ]. Pattern Recognition letters, 26, 2005. 57 - 60.
  • 7张生亮,谢永华,杨静宇.一种双向压缩的二维特征抽取算法及其应用[J].计算机应用研究,2006,23(5):63-64. 被引量:8
  • 8S Noushath, G Hemantha Kumar, P Shivakumara. (2D)^2LDA: An efficeient approach for face recognition[J]. Pattern Recognition 39, 2006. 1396 - 1400.
  • 9陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61

二级参考文献20

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 3边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..
  • 4Pentland A.Looking at people:Sensing for ubiquitous and wearable computing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (1):107 ~ 119.
  • 5Peter N Belhumeur,Joao P Hespanha,David J Kriengman.Eigenfaces vs fisherfaces:recognition using class specific linearprojection[J].IEEE Transactions on Pattern Anal ysis and Machine Intelligence,1997,19 (7):711 ~ 720.
  • 6Jin Zhong,Yang J Y,Hu Z S,et al.Face recognition based on uncorrelated discriminant transformation[J].Pattern Recognition,2001,34(7):1405 ~ 1416.
  • 7Hong Z Q,Yang J Y.Optimal discriminant plane for a small number of samples and design method of classifier on the plane[J].Pattern Recognition,1991,24(4):317 ~324.
  • 8Liu K,Cheng Y Q,Yang J Y.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6 (5):817 ~ 829.
  • 9Chen L F,Mark Liao Y H,Ko M T,et al.A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):1713 ~ 1726.
  • 10Yu Hua,Yang Jie.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34 (10):2067 ~ 2070.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部