期刊文献+

粒子滤波实现无线传感器网络目标跟踪预测 被引量:6

Realization of Target Tracking Prediction in WSN Using Particle Filter
下载PDF
导出
摘要 为减少无线传感器网络(WSN)目标跟踪预测误差,提出一种粒子滤波实现WSN目标跟踪预测方法;该方法采用粒子滤波获得目标运动状态,联合当前时刻目标的本地估计位置、预测速度和加速度获得下一时刻目标预测位置,预测位置可作为当前头节点唤醒所述下一时刻传感器节点的依据;结果表明,上述粒子滤波预测方法预测准确度相比线性预测方法明显提高,均方根误差RMSE减少49%;相比基于二次多项式运动建模的WSN目标跟踪预测方法,均方根误差RMSE减少6%。 Aiming at reducing then target tracking prediction error in wireless sensor network, a novel method of realizing target tracking prediction in WSN using particle filter is proposed. According to the method, target state can be obtained by particle filter. The local estimation position, the predicting speed and acceleration of current time instant are combined to achieve the predicting position of next time instant, which is used for the current head node to awake sensor node of next time instant. Experimental results show that the general prediction accuracy of particle filter method is improved highly compared with linear prediction method while RMSE decreased by 49%, and compared with target tracking prediction in WSN based on quadratic polynomial motion modeling method (PQPMM) while RMSE decreased by 6 %.
出处 《计算机测量与控制》 CSCD 北大核心 2010年第4期930-932,共3页 Computer Measurement &Control
基金 国家自然科学基金项目(50764005) 教育部新世纪优秀人才支持计划项目(NCET-08-0211) 广东省自然科学基金项目(9151052101000013)
关键词 无线传感器网络 目标跟踪 粒子滤波 预测 wireless sensor networks (WSN) target tracking particle filter prediction
  • 相关文献

参考文献9

二级参考文献45

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2张友安,糜玉林,吕凤琳,孙富春.双连杆柔性臂自适应模糊滑模控制[J].吉林大学学报(工学版),2005,35(5):520-525. 被引量:6
  • 3邓小龙,谢剑英,郭为忠.用于状态估计的自适应粒子滤波[J].华南理工大学学报(自然科学版),2006,34(1):57-61. 被引量:10
  • 4黄仑,徐昌庆.无线传感器网络目标跟踪机制的研究与改进[J].计算机工程与应用,2006,42(16):140-142. 被引量:6
  • 5Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[R].Oxfird:Department of Engineering Science,University of Oxford,1996.
  • 6Gordon N,Salmond D J,Smith A F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J].IEE Proceedings-F,1993,140(2):107-113.
  • 7de Freitas J F G,Niranjan M,Gee A H,et al.Sequential Monte Carlo methods to train neural network models[J].Neural Computation,2000,12(4):955-993.
  • 8Van der Merwe R,de Freitas N,Doucet A,et al.The unscented particle filter[R].Cambridge:Department of Engineering,Cambridge University,2000.
  • 9Doucet A,Godsill S J,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 10Yaakov Bar-shalom,Li Xiao-rong.Estimation and tracking:principles,techniques,and software[M].Boston:Artech House,1993.

共引文献19

同被引文献46

  • 1桑成伟,徐毓,张楠,张萍.一种机动目标的跟踪算法研究[J].计算机测量与控制,2006,14(10):1398-1400. 被引量:12
  • 2李建中.无线传感器网络专刊前言[J].软件学报,2007,18(5):1077-1079. 被引量:21
  • 3Deguchi K, Kawanaka O, Okatani T. Object tracking by the mean --shift of regional color distribution combined with the particle--fil- ter algorithm [A]. Proc of the 17th International Conference on Pattern Recognition [C]. 3: 506--509.
  • 4Maggio E, Cavallaro A. Hybrid particle filter and mean shift track- er with adaptive transition model [J]. Acoustics, Speech, and Signal Processing, 2005.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel--based object tracking [J]. IEEE Trans on Patten Analysis and Machine intelligence, 2003, 25 (5): 564--575.
  • 6Xiao W D,Xie L H,Lin J Y,et al.Multi-sensor scheduling for reliable target tracking in wireless sensor networks[A].Proc.of 6th International Conference on ITS Telecommunications[C].2007:996-1000.
  • 7Liu X Q,Zhao G,Ma X L.Target localization and tracking in noisy binary sensor networks with known spatial topology[J].Wireless Communications and Mobile Computing,2009,9(8):1028-1039.
  • 8Wang X,Ding L,Wang S.Multi-step optimized measurement in hierarchically clustered wireless sensor networks[J].Jixie Gongcheng Xuebao,2009,45(4):1-7.
  • 9Yick J,Mukherjee B,Ghosal D.Analysis of a prediction-based mobility adaptive tracking algorithm[A].Proc.of2nd Internation-al Conference on Broadband Networks(Broadnets)(IEEE Cat.No.05EX1116)[C].Boston,MA USA,2005.
  • 10Majdi M R,Cuello A.C.Variations in excitatory and inhibitory posts-ynaptic protein content in rat cerebral cortex with respect to aging and cognitive status[J].neuoscience,2009;159:896-907.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部