摘要
根据线弹性薄壳理论和线粘弹性理论,在附加约束层阻尼(CLD)的剪切耗能作用下,推导出两纵边简支约束层合拱壳的整合一阶常微分矩阵方程组,该方程组由12个独立的一阶常微分方程组成,共有12个具有明确物理意义的变量.在该模型的基础上,应用新型齐次扩容精细积分技术,构建出一种高效率和高精度的半解析半数值方法.算例表明这种方法具有较高的精度.
Based on the linear theories of thin shells and viscoelastic materials,considering the energy dissipation due to the shear deformation of Constrained Layer Damping(CLD),a first-order ordinary differential matrix equation of CLD laminated arch shell with two longitudinal edges simply supported is derived.It consists of 12 independent first-order differential equations and is represented by 12 variables with each variable having a distinct physical meaning.On the foundation of this,with applying the technologies of homogenized precise integration,a semi-analytical and semi-numerical method with high efficiency and accuracy is built.Numerical prediction of this paper shows that the proposed method has good accuracy.
出处
《广西工学院学报》
CAS
2010年第1期32-40,共9页
Journal of Guangxi University of Technology
基金
国家自然科学基金项目(10662003)
广西教育厅基金项目(200807MS109)资助
关键词
一阶矩阵微分方程
精细积分法
拱壳
matrix differential equation of first order
precise integration method
arch shell