期刊文献+

连轧钢管生产中的三辊机架匹配的建模与遗传算法 被引量:2

Modeling and Genetic Algorithm for 3-Roll-Stand-Set Rebuilding in Steel Tube Rolling
下载PDF
导出
摘要 在轧钢生产中,不同外径的钢管需要用具有相应加工直径的三辊机架来加工。而具有加工直径D的三辊机架可以通过对具有加工直径比D小的旧三辊机架的改造而获得。因此,对下一个计划周期的加工需求,需要通过改造获得所需要的三辊机架。以总加工量最小为目标,满足生产需求为约束,建立了一个整数规划模型。根据所建立的模型,开发了基于遗传算法的求解方法。数据试验表明了算法的有效性。 In steel tube rolling,the key equipment is 3-roll-stand-set,which has its processing diameter.Steel tubes with a given outside diameter should be produced by a 3-roll-stand-set that has the corresponding processing diameter.A 3-roll-stand-set with processing diameter D can be obtained by rebuilding a used one with processing diameter less than D.Thus,3-roll-stand-set should be prepared to meet the production requirements for the coming scheduling horizon.An integer programming model is developed for 3-roll-stand-set rebuilding to minimize the manufacturing time such that production requirements can be met.With the model,genetic algorithm is presented to solve the problem.A practical application example is given to show the effectiveness of the proposed method.
出处 《工业工程》 北大核心 2010年第2期82-85,共4页 Industrial Engineering Journal
基金 国家自然科学基金资助项目(70771008)
关键词 三辊机架 整数规划 遗传算法 3-roll-stand-set integer programming genetic algorithm
  • 相关文献

参考文献9

二级参考文献24

  • 1钟声,云敏,焦安全.求解单圈多部图的匹配算法[J].广西师范大学学报(自然科学版),2007,25(2):202-205. 被引量:5
  • 2叶菲明科C П.轧钢生产的计算机管理[M].北京:冶金工业出版社,1983..
  • 3Hopcroft J E, Karp R M. An n^5/2 Algorithm far Maximum Matching in Bipartite Graphs[J]. SIAM Journal on Computing, 1973,2(4) : 225-231.
  • 4Lawler E L, Lenstra J K, Rinnooy A H G, et al. Sequencing and Scheduling: Algorithms and Complexity[J]. HandBooks in Operations Research and Management Science, 1993 (4): 445-522.
  • 5Eroh L, Schultz M. Matching Graphs[J]. Graph Theory, 1998,29(2) : 73-86.
  • 6Galil Z. Efficient Algorithms for Finding Maximum Matching in Graphs[J]. ACM Computing Surveys, 1986,18(1) : 23-38.
  • 7Edmonds J. Paths, Trees and Flowers[J], Canadian Journal of Mathematics, 1965(17) :449-467.
  • 8Micali S, Vazirani V. An O (n1/2 m) Algorithm for Finding Maximum Matching in General Graphs[C]//Proc of the 21st Symp on Foundations of Computing, 1980:17-27.
  • 9Gabow H N. An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs[J]. Journal of the ACM, 1976,23(2):221- 234.
  • 10Kameda T, Munro I. A O( | V| *|E|) Algorithm for Maximum Matching of Graph[J]. Computing, 1974(12):91-98.

共引文献74

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部