期刊文献+

基于拉格朗日分解算法的SAR图像混合像元分解 被引量:2

Decomposition of SAR image mixed pixels based on lagrangian constrained neural network
下载PDF
导出
摘要 为解决与光学遥感图像不同的合成孔径雷达(SAR)图像中存在大量混合像元的问题,本文提出了一种基于拉格朗日分解算法的SAR图像混合像元分解的方法,结合相关内容中具体定理的证明,文中给出拉格朗日分解算法用于SAR图像混合像元分解的系统的求解方法.用人工模拟SAR图像和ENVISAT SAR图像进行实验,结果表明拉格朗日分解算法的混合像元分解结果明显优于非约束类神经网络(文中实验以BP神经网络为例)的分解结果. For resolving the problem of mixed pixels that the Synthetic Aperture Radar (SAR) image has which is different from optical remote sensing image, we apply the Lagrangian constrained neural network to decomposition of SAR image mixed pixels. Combining the demonstration of specific theorem in relevant content, we propose a systemic solving method which uses Lagrange constrained neural network decompose the mixed pixels of the SAR image. We make experiments on artificial simulated SAR images and ENVISAT SAR images. Experimental results show that the Lagrangian constrained neural network can get significantly more precise results than other neural network which does not contain restrictive conditions, (such as the BP neural network).
出处 《地球物理学进展》 CSCD 北大核心 2010年第1期316-323,共8页 Progress in Geophysics
基金 北京市自然科学基金(4062020) 国家自然科学基金(40672195 40372129) 国家863计划(2007AA12Z156) 教育部新世纪优秀人才支持计划项目联合资助
关键词 合成孔径雷达 混合像元分解 神经网络 拉格朗日约束 空间数据挖掘 盲源分离 synthetic aperture radar (SAR) ,decomposition of mixed pixels, neural network, lagrangian constrainted, spatial data mining, blind source separation
  • 相关文献

参考文献20

  • 1Chang C I,Ren H,Chang C C,Jensen J O,Amico F D.Estimation of subpixel target size for remotely sensed imagery[J].IEEE Trans.on Gsoscience and Remote Sensing,2004,42(6):1309-1320.
  • 2Shaw G,Burke H.Spectral imaging for remote sensing[J].Lincoln Laboratory Journal,2003,14(1):3-28.
  • 3Chang C I,et al.Least squares subspace project ion approach to mixed pixel classification for hyperspectral images[J].IEEE Trans.on Gsoscienes and Remote Sensing,1998,36(3):898-912.
  • 4Giles M F,Manoj K A.Incorporating mixed pixels in the training,allocation and testing stages of supervised classifications[J].Pattern Recognition Letters,1996,17(13):389-398.
  • 5周昊,王斌,张立明.一种新的遥感图像混合像元分解方法[J].红外与毫米波学报,2005,24(6):463-466. 被引量:12
  • 6Bastin L.Comparison of fuzzy c-means classification,linear mixture modelling and MLC probabilities as tools for unmixing coarse pixels[J].International Journal of Remote Sensing,1997,17:3629-3648.
  • 7Bressan M,Guillamet D,Vitria J.Using an ICA representation of local color histograms for object recognition[J].Pattern Recognition,2003,36(3):691-701.
  • 8丛浩,张良培,李平湘.一种端元可变的混合像元分解方法[J].中国图象图形学报,2006,11(8):1092-1096. 被引量:24
  • 9Kanellopoulos I,Varfis A,Wilkinson G G,Mégier J.Classification of remotely-sensed satellite images using multilayer perception networks[A].in Proceedings of the 1991 International Conference on Artificial Neural Networks (ICANN-91),1991.
  • 10Zheng W,Yan T L,You SC.Analysis of advantage on radar remote sensing for agricultural application,towards digital earth-proceedings of the international symposium on digital earth[M].Beijing:Science Press,1999.

二级参考文献93

共引文献129

同被引文献29

  • 1唐秋华,刘保华,陈永奇,周兴华,丁继胜.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319. 被引量:27
  • 2Wang D, Zeng X J, John A K. Hierarchical hybrid fuzzyneural networks for approximation with mixed input variables. Neurocomputing, 2007, (70) : 3019-3033.
  • 3Feng S, Li H X, Hu D. A HHFNN based on Gaussian new training algorithm for membership function for approximation. Neurocomputing, 2009, (72) :1631-1638.
  • 4Turk M, Pentiand A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 1(3) :71-86.
  • 5Tibshirani R. Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Set, 1996,58(1):267-288.
  • 6Stoeva S, Nikov A. A fuzzy backpropagation algorithm. Fuzzy Sets Syst, 2000, (112) :27-39.
  • 7Zadeh L A. Fuzzy sets. Information and Control, 1965, (8) : 338-353.
  • 8Buckley J J, Hayashi Y. Fuzzy neural networks: a survey. Fuzzy Sets Syst. , 19 9 4, (66) : 1 -13.
  • 9Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Systems Man Cybernet, , 1985,(15) :116-132.
  • 10TrevorH,RobertT.统计学习基础:数据挖掘、推理与预测.范明等译,北京:电子工业出版社,2004.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部