期刊文献+

体CT锥束精确图像重建Katsevich算法的理论研究

Theory Research Katsevich Algorithm of Volume CT Cone-beam Exact Reconstruction Image
下载PDF
导出
摘要 本文主要介绍了关于新型的锥束CT重建算法——Katsevich算法。首先描述了如何引入Katsevich重建公式,同时介绍了Tam-Dannielson窗口和PI线的一系列与其他重建算法不同的重建方式,指出反投影过程与Feldkamp重建算法的反投影过程是一样的。我们可以利用这个重建算法有效地进行锥束螺旋CT重建,并得到效果理想的图像。我们也可以设计相应的并行算法,便于分析这些算法的复杂度,如:分析算法时间并且采用并行算法加快运行速度。这个方法也可以被用来改进成为其他重建公式(例如Zou和Pan的BPF型反转公式)。 In this paper, a new reconstruction approach is presented based on cone-beam CT inversion scheme--Katsevich Algorithm. The beginning of the thesis describes how to introduce Katsevich reconstruction formula, Then it introduces series of reconstruction method of Tam-Dannielson window and PI-line reconstruction algorithm different from other reconstruction methods. The last part of the paper is the similarities of methods between back-projection process and the well-known Feldkamp back-projection process. By utilizing the method mentioned above, the spiral cone-beam CT can be reconstructed effectively and satisfactory results of images can be got; besides, the corresponding parallel algorithm is also designed through this method to facilitate the analysis of these algorithms. Moreover, this method can also be converted into other reconstruction formula. (for example, inverted BPF formula of zou and pan)
出处 《CT理论与应用研究(中英文)》 2010年第1期9-20,共12页 Computerized Tomography Theory and Applications
关键词 PI线段算法 螺旋锥束CT 滤波反投影 PI-line algorithm helical CT filtered backprojection
  • 相关文献

参考文献9

  • 1Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm[J]. Opt Soc Am, 1984, 1(6): 612-619.
  • 2Katsevich A. Improved exact FBP algorithm for spiral CT[J]. Adv Appl Math, 2004, 32: 681-697.
  • 3Katsevich A. Theoretically exact FBP-type inversion algorithm for spiral CT[J]. SIAM J Appl Math, 2002, 62(6): 2012-2026.
  • 4Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT[J]. Phys Med Biol. 2002. 47: 2583-2597.
  • 5Wang G, Lin T, Cheng P. A general cone-beam reconstruction algorithm[J]. IEEE Trans Med Imag, 1993. 12(8) : 486-496.
  • 6王本,王革.锥束CT图像重建算法[J].CT理论与应用研究(中英文),2001,10(2):1-8. 被引量:14
  • 7Zhao S, Yu H, Wang G. A unified framework for exact cone-beam reconstruction formulas[J]. Medical Physics, 2005, 32(6): 1712-1721.
  • 8Zou Y, Pan XC. Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT[J]. Phys Med Biol, 2004, 49: 941-959.
  • 9Zou Y, Pan XC. Image reconstruction on PI-lines by use of filtered backprojection in helical cone-beam CT[J]. Phys Med Biol, 2004, 49: 2717-2731.

二级参考文献33

  • 1[1]Kirillov AA: On a problem of I.M.Gel'fand. Sov Math Dokl 1961,2:268~269.(English translation)
  • 2[2]Smith BD: Cone-beam convolution formula. Comput Bio Med 1983, 13:81-87
  • 3[3]Tuy HK: An inversion for cone-beam reconstruction. SIAM ApplMath 1983, 43:546~522
  • 4[4]Grangeat P: Mathematical framework of cone beam 3d reconstruction via the first derivative of the radon transform. In:Herman GT,Louis AK and Natterer F,Eds. Mathematcal Methods in Tomography. Springer Verlag, 1990
  • 5[5]Smith BD: Image reconstruction from cone-beam projection:necessary and sufficient condition and reconstruction methods.IEEE Trans Med Imag 1985,MI-4: 14~28
  • 6[6]Axelsson C and Danielsson PE: Three-dimensional reconstruction from cone-beam data in time. Phys Med Biol 1994,39:477~491
  • 7[7]Edholm PR and Herman GT: Linograms in image reconstruction from projections. IEEE Trans MedicalImaging 1987, 6:301~307
  • 8[8]H.Kudo, F.Noo, and M.Defrise: Cone-beam filtered-backprojection algorithm fortruncated helical data. Phys. Med. Biol,1998, 43:2885~2909
  • 9[9]Tam KC, Samarasekera S, and Sauer F:Exact cone-beam CT with a spiralscan. Phys. Med. Biol,1998, 43:847~855
  • 10[10]Defrise M, Noo F, and Kudo H: A solution to the long-object problem in helical cone-beam tomography. Phys. Med. Biol, 2000, 45:623~643

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部